Polymers containing fullerene or carbon nanotube structures

Changchun Wanga,*, Zhi-Xin Guob, Shoukuan Fua, Wei Wub, Daoben Zhub

aDepartment of Macromolecular Science, The Key Laboratory of Polymer Molecular Engineering of Ministry of Education, Fudan University, Shanghai 200433, China
bInstitute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China

Received 23 May 2003; revised 26 July 2004; accepted 2 August 2004
Available online 5 October 2004

Abstract

This review deals with recent progress in studies of polymeric covalent and noncovalent modifications of fullerenes (mainly C\textsubscript{60}) and carbon nanotubes (CNTs), and their applications. By using functional polymers to react with fullerenes, or synthesizing polymers in the presence of fullerenes, various kinds of polymeric fullerenes can be prepared: side-chain polymers, main-chain polymers, dendritic fullerenes, star-shaped polymers, fullerene end-capped polymers, etc. Furthermore, by controlling the functional groups in polymer chains and reaction conditions, many well-defined fullerene polymers have been prepared. ‘Living’ polymerization methods have also been introduced for preparation of fullerene polymers, e.g. anionic polymerization, iniferter technique, stable free radical polymerization, and atom-transfer free-radical polymerisation. With these living methods, both the architecture of the fullerene polymers and the grafted polymer chains can be well-controlled. All of these methods establish a good platform for developing applications of fullerene polymers. The synthesis of polymeric CNTs is only in its infancy. However, present results show promise that the combination of the unique properties of CNTs with functional polymers will lead to novel materials with unusual mechanical, electrical, magnetic, and optical properties. Doping of polymeric systems with fullerenes in is also a very important research area, especially for preparation of electronic and optical materials. Both conducting and conventional polymers can be used as matrices in the preparation of functional composites. The structures and properties of these composites are strongly dependent on the properties and concentrations of the active components. CNT-doped polymers have also been prepared and show interesting properties. The combination of the unique properties of fullerenes and CNTs with polymers makes these materials potential candidates for many applications, such as data storage media, photovoltaic cells and photodiodes, optical limiting devices, photosensitive drums for printers, and so on. The applications of polymeric fullerenes and CNTs are also reviewed in this article.

© 2004 Elsevier Ltd. All rights reserved.

Keywords: Fullerene (C\textsubscript{60}); Carbon nanotubes (CNTs); Polymer fullerenes; Covalent modifications; Doping; Photoconductivity; Photorefractivity; Photovoltaic cells; Photodiodes; Optical limiting
1. Introduction

1.1. A brief history of fullerene and carbon nanotubes

In 1985, Kroto et al. [1] first reported the existence of buckminsterfullerene C_{60} (Scheme 1a), theoretical speculation about carbon clusters [2] over 36 years was finally verified. Since then, this beautiful molecule has attracted ever more attention of theoretical and experimental scientists. Some chemists began to focus their research on the chemistry of this molecule, but real fullerene chemistry began only after 1990 when Krätschmer et al. described a method for preparing macroscopic quantities of C_{60} [3]. Then many of polymer scientists shifted their attention to this field. They tried to use this molecule as a building block.
<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIBN</td>
<td>2,2′-azobis(isobutyronitrile)</td>
</tr>
<tr>
<td>ATRP</td>
<td>atom transfer radical polymerization</td>
</tr>
<tr>
<td>BAF</td>
<td>benzylaminofullerene</td>
</tr>
<tr>
<td>BCBO</td>
<td>benzocyclobutenone</td>
</tr>
<tr>
<td>BPO</td>
<td>benzyl peroxide</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>C_{60}(St-PCHD-PS)_{6}</td>
<td>6-star-fullerene[styrene-block-poly(1,3-cyclohexadiene)-block-poly styrene]</td>
</tr>
<tr>
<td>C_{60}(St-PPP-PS)_{6}</td>
<td>6-star-fullerene[styrene-block-poly(1,4-phenylene)-block-polystyrene]</td>
</tr>
<tr>
<td>CNT</td>
<td>carbon nanotube</td>
</tr>
<tr>
<td>CV</td>
<td>cyclic voltammogram</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-diazabicyclo[5,4,0]undec-7-ene</td>
</tr>
<tr>
<td>DCM</td>
<td>dicyanovinyl aniline</td>
</tr>
<tr>
<td>DLS</td>
<td>dynamic light scattering</td>
</tr>
<tr>
<td>DMF</td>
<td>dimethyl formamide</td>
</tr>
<tr>
<td>DSC</td>
<td>differential scanning calorimetry</td>
</tr>
<tr>
<td>EPDM</td>
<td>ethylene-propylene ethyldiene norbornene terpolymer</td>
</tr>
<tr>
<td>GPC</td>
<td>gel permeation chromatography</td>
</tr>
<tr>
<td>HOMO</td>
<td>highest occupied molecular orbital</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>IPCE</td>
<td>incident photon-current efficiency for monochromatic light</td>
</tr>
<tr>
<td>ITO</td>
<td>indium tin oxide</td>
</tr>
<tr>
<td>Jsc</td>
<td>short circuit current</td>
</tr>
<tr>
<td>LC</td>
<td>liquid crystal</td>
</tr>
<tr>
<td>LDPE</td>
<td>low-density polyethylene</td>
</tr>
<tr>
<td>LED</td>
<td>light-emitting diode</td>
</tr>
<tr>
<td>LESR</td>
<td>light-induced electron-spin resonance</td>
</tr>
<tr>
<td>LUMO</td>
<td>lowest unoccupied molecular orbital</td>
</tr>
<tr>
<td>MBP</td>
<td>methyl 2-bromopropionate</td>
</tr>
<tr>
<td>MDDA</td>
<td>didecylamine modified MWNTs</td>
</tr>
<tr>
<td>MEH-PPV</td>
<td>poly[2-methoxy, 5-(ethyl-hexyloxy)-p-phenylene vinylene]</td>
</tr>
<tr>
<td>MWNT</td>
<td>multiwalled carbon nanotube</td>
</tr>
<tr>
<td>NHS</td>
<td>N-hydroxy succinimide</td>
</tr>
<tr>
<td>NLO</td>
<td>nonlinear optical</td>
</tr>
<tr>
<td>NMP</td>
<td>N-methyl-2-pyrrolidone</td>
</tr>
<tr>
<td>OO-PPV</td>
<td>poly(2,5-dioctyloxy-p-phenylene vinylene)</td>
</tr>
<tr>
<td>OPV</td>
<td>oligophenylevinylene</td>
</tr>
<tr>
<td>P3OT</td>
<td>poly(3-octylthiophene)</td>
</tr>
<tr>
<td>PANI</td>
<td>polyaniline</td>
</tr>
<tr>
<td>PAT</td>
<td>poly(3-alkylthiophene)</td>
</tr>
<tr>
<td>PBMA</td>
<td>poly(n-butyl methacrylate)</td>
</tr>
<tr>
<td>PC</td>
<td>polycarbonate</td>
</tr>
<tr>
<td>PDI</td>
<td>polydispersity index</td>
</tr>
<tr>
<td>PE</td>
<td>polyethylene</td>
</tr>
<tr>
<td>PEO</td>
<td>poly(ethylene oxide)</td>
</tr>
<tr>
<td>PHDK</td>
<td>poly[1,6-heptadiene]</td>
</tr>
<tr>
<td>PHEMA</td>
<td>poly(hydroxyethyl methacrylate)</td>
</tr>
<tr>
<td>PIA</td>
<td>photoinduced absorption</td>
</tr>
<tr>
<td>PL</td>
<td>photoluminescence</td>
</tr>
<tr>
<td>PMMA</td>
<td>poly(methyl methacrylate)</td>
</tr>
<tr>
<td>PMPS</td>
<td>phenylmethyl polysilane</td>
</tr>
<tr>
<td>PmPV</td>
<td>poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylene vinylene)</td>
</tr>
<tr>
<td>PPA</td>
<td>poly(phenylacetylene)</td>
</tr>
<tr>
<td>PPB</td>
<td>poly(1-phenyl-1-butyn)</td>
</tr>
<tr>
<td>PPO</td>
<td>poly(propylene oxide)</td>
</tr>
<tr>
<td>PPP</td>
<td>poly(1-phenyl-1-propyne)</td>
</tr>
<tr>
<td>PPV</td>
<td>poly(p-phenylene vinylene)</td>
</tr>
<tr>
<td>PPyPV</td>
<td>PR poly{(2,6-pyrindylene-vinylene)-co-[(2,5-dioctyloxy-p-phenylene)vinylene]}photorefractive</td>
</tr>
<tr>
<td>PS</td>
<td>polystyrene</td>
</tr>
<tr>
<td>PSS</td>
<td>polystyrene sulfonate</td>
</tr>
<tr>
<td>PVDF</td>
<td>polyvinylidene fluoride</td>
</tr>
<tr>
<td>PVK</td>
<td>poly(N-vinylcarbazole)</td>
</tr>
<tr>
<td>PVP</td>
<td>polyvinyl pyrrolidone</td>
</tr>
<tr>
<td>RSA</td>
<td>reverse saturable absorption</td>
</tr>
<tr>
<td>sec-BuLi</td>
<td>sec-butyllithium</td>
</tr>
<tr>
<td>SMCC</td>
<td>succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate</td>
</tr>
<tr>
<td>STM</td>
<td>scanning tunneling microscopy</td>
</tr>
<tr>
<td>SWNT</td>
<td>single-walled carbon nanotube</td>
</tr>
<tr>
<td>(t_{1/2})</td>
<td>decay half-time</td>
</tr>
<tr>
<td>TEM</td>
<td>transmission electron microscopy</td>
</tr>
<tr>
<td>TEMPO</td>
<td>2,2,6,6-tetramethylpiperidiny1-oxy</td>
</tr>
<tr>
<td>(T_g)</td>
<td>glass transition temperature</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TMEDA</td>
<td>(N,N',N''-tetramethylethylenediamine)</td>
</tr>
<tr>
<td>TMEDA</td>
<td>tetramethyl-ethylenediamine</td>
</tr>
<tr>
<td>TOF-MS</td>
<td>time of flight-mass spectrum</td>
</tr>
<tr>
<td>TPA</td>
<td>triphenylamine</td>
</tr>
<tr>
<td>UV/Vis</td>
<td>ultraviolet visible</td>
</tr>
<tr>
<td>Voc</td>
<td>open circuit voltage</td>
</tr>
</tbody>
</table>
block to construct novel materials with unusual properties. With the sharp decrease of price and availability of large amounts of C$_{60}$, the first mass application appeared in 2003 in a very unexpected form: bowling balls with fullerene coatings [4]. Now, tons of C$_{60}$ are produced by a Japanese venture company by burning toluene to produce fullerenes [5], and they have built a plant capable of producing 40 t/yr and plan production of 1500 t/yr in 2007 [6].

Carbon nanotubes (CNTs) (Scheme 1b), the macromolecular analog of fullerenes, were found by Iijima [7] in 1991. These are arrangements of carbon hexagons formed into tiny tubes. They may have diameters ranging from a few angstroms to tens of nanometers and can have lengths of up to several centimeters. CNTs can be viewed as hollow coaxial cylinders formed of graphite layers with both ends of the cylinder normally capped by fullerene-like structures. There are two kinds of CNTs, single-walled carbon nanotubes (SWNTs) formed by a single graphene sheet, and multiwalled nanotubes (MWNTs) formed with additional graphene sheets wrapped around the SWNT core. The development of CNT research began soon after the macroscopic production of C$_{60}$ and the identification of CNTs in soot deposits formed during plasma arc experiments. CNTs possess unique mechanical and electronic properties depending on their geometry and dimensions. CNTs have very high moduli [8,9], and are believed to be the lightest and strongest materials so far discovered. Recently, uniformly conductive CNTs/Nylon 6 composites have been supplied by RTP company [10].

Preparation of fullerene- or CNT-containing polymeric materials is noteworthy for several reasons. For instance, when a small amount of C$_{60}$ or CNTs is introduced into a polymer system, many properties of the polymer are enhanced, such as photoconductivity [11], mechanical properties [12], optical limiting properties [13], etc. Another goal is to overcome the drawbacks of C$_{60}$ or CNTs for large-scale applications, due to their insolubility, or near insolubility, in most solvents, and their tendency to aggregate [14]. These problems can be overcome by polymer modification of the fullerenes or CNTs [15–19], thus opening routes to tailor-made polymeric materials with interesting electronic, magnetic, mechanical, catalytic, and optical properties.

1.3. Classification of fullerene polymers

In the course of the rapid development of the fullerene chemistry, many types of polymeric derivatives have been prepared. A structural classification of polymeric fullerene derivatives is presented in Scheme 2.

Many chapters and reviews have been published on fullerenes [4,20–25]: some focus on their physical properties [20–22]; others focus on their synthesis [4, 23–35]. Our aim here to give a detailed account of progress, especially recent progress, on the several categories of fullerene-containing polymeric materials. CNT-containing polymers are also reviewed. Finally, we mention some interesting applications of these materials.

2. Polymeric derivatives of fullerenes

2.1. General aspects

As we know, when C$_{60}$ is attached to a polymer chain, properties of the polymer will be changed and
some new properties will appear. At the same time, the fullerene polymer may be soluble in common solvents. Through controlled modification of C$_{60}$, fullerene polymers with different structures can be obtained, such as side-chain polymers, main-chain polymers, star-shaped polymers, etc. In this section, the synthesis of fullerene-containing polymers is summarized systematically, with emphasis on recent progress.

2.2. Side-chain fullerene polymers

Research on polymeric fullerene derivatives has benefited from the rapid development of fullerene chemistry. The first attempt to produce side-chain fullerene polymers was by Wudl et al. [26]. They first prepared a low molecular weight bihydroxy-functional fullerene derivative and then obtained a C$_{60}$-containing polyester or polyurethane by polycondensation (Scheme 3). Because of the large steric hindrance of the C$_{60}$ moiety, the degree of polymerization was very low.

Using different strategies, Geckeler and Hirsch prepared the first true side-chain fullerene polymers [27]. In order to overcome the influence of steric hindrance of the C$_{60}$ moiety on the polymer molecular weight, they prepared the amino-polymer first, and then reacted this polymer with fullerene to obtain the side-chain fullerene polymer (Scheme 4). A similar method was used to synthesize fullerene-based polymers by covalently attaching fullerenes to amine-containing hydrocarbon polymers [28]. Some of these polymers are readily soluble in hexane or tetrahydrofuran (THF), although fullerene itself is essentially insoluble. Water-soluble fullerene polymer can also be prepared by this method [29]. In the reaction of an amine group with fullerene, control of reaction conditions is essential to avoid the formation of insoluble polymer, because C$_{60}$ easily forms multiaddition products. Using different synthesis strategies, Hawker prepared a linear polymer with pendent C$_{60}$ moieties by nitrogen bridging [30] (Scheme 5). In this kind of polymer, the content of C$_{60}$ could be
controlled by using the azidomethyl units in pre-formed polymer. Because the azide group is easily introduced in the polymer chain and its reaction with C₆₀ can be well controlled, this method has been widely used [31–35]. For example, using group-transfer polymerization, allyl methacrylate and methyl methacrylate (or n-butyl methacrylate) copolymer were synthesized [32]; then the pendant allyl
groups in the copolymers were hydrobrominated, followed by reaction with sodium azide; and finally fullerene was incorporated via an addition reaction (Scheme 6). The resulting fullerene-containing poly(alkyl methacrylate)s have fairly narrow polydispersities. Another interesting side-chain fullerene polymer (C₆₀-PHEMA) was synthesized by Goh et al. [33] by Hawker’s method [30] (Scheme 7). These polymers had varying C₆₀ content. Goh et al. found that C₆₀ content greatly influences solubility of the final product. When C₆₀ content is higher than 3.2 wt%, the solubility of the polymer in most organic solvents is limited.

Using the reaction of the azide group with fullerene, fullerene-containing monomers can also be prepared. Sato et al. [21] prepared methacrylate monomers (Scheme 8) containing fullerene. These monomers were copolymerized with t-butyl
Scheme 7. Synthesis of C\textsubscript{60}-containing polymethacrylate [33].

Scheme 8. Synthesis of C\textsubscript{60}-containing polymer from azido-C\textsubscript{60} monomer [34].
methacrylate by radical polymerization giving a copolymer with the fullerene moieties in the side chains. Because fullerene can terminate the free radical of the initiator, the structure with fullerene moieties in the side chains shown in Scheme 8 will not be completely realized.

The cycloaddition reaction is another important method for preparing side-chain fullerene polymers. The C₆₀-containing polymers are readily obtained from the reaction of benzocyclobutenone (BCBO)-PSt and C₆₀ in refluxing 1,2-dichlorobenzene (Scheme 9) [36]. Experimental results show that incorporation of C₆₀ into vinyl polymers based on the unique cycloaddition reaction of BCBO with C₆₀ is nearly quantitative, and the copolymerizability of BCBO monomer with a wide range of vinyl monomers allows for the preparation of a variety of BCBO-containing polymers. The amount of C₆₀ present in a polymer is dictated by its BCBO content, which can be easily controlled through copolymerization or grafting. Using the same reaction, fullerene can also be introduced into the side chain of poly(dimethylsiloxane) [37] to give polymers with excellent film-forming properties.

Fullerenated polycarbonates (TCNEOC₆₀-PCs) can be prepared by direct reaction of TCNEO-C₆₀ with PC using AlCl₃ as a catalyst (Scheme 10) [38, 39]. The studies cited showed that the electron-accepting ability of TCNEOC₆₀ is stronger than that of C₆₀, and TCNEOC₆₀-PCs limit 532 nm optical pulses more effectively than C₆₀-PCs. This suggests that increasing the electron-accepting ability of fullerene will generally be effective in improving the optical limiting properties of fullerene polymers. The fullerenated PCs had good thermal stability, and the glass transition temperatures (T_g) of the TCNEOC₆₀-PCs were about 20–30 °C lower than that of the starting PCs (148.5 °C). Interestingly, a linear relationship between the feed ratio and the
fullerene content was found for the fullerenation of polycarbonate. Similarly, C₆₀ can be incorporated directly into uncrosslinked polystyrene by AlCl₃ catalysis, as reported by Liu et al. [40], who prepared C₆₀–PS polymers by Friedel–Crafts reactions.

Conjugated polymer-fullerene composites show very good photoconductivity [11]. The attachment of a fullerene moiety to the conducting polymer backbone is a very important result, since it can be expected to lead to new photoconductive materials with more intimate association of donor/acceptor sites. The attachment of fullerenes onto polythiophene derivatives was explored by Ferraris et al. [35] and Zhang [41] (Scheme 11). In these studies, soluble conjugated copolymers were reported, where a polythiophene main chain is substituted with solubilizing side chains and fullerene side groups. The covalent attachment of fullerene derivatives in substituted polythiophenes leads to good processing properties for polymer photodiodes. The inclusion of

Scheme 10. Synthesis of polycarbonate containing a C₆₀ derivative [38].

Scheme 11. Synthesis of C₆₀ modified polythiophene copolymers. Reagents, reaction conditions and percent yield: (a) 1,8-dibromo-octane, K₂CO₃, 2-butanol, reflux, 24 h, 66%; (b) N-bromosuccinimide (NBS), dimethylformamide (DMF), 20 h, RT, 94%; (c) 3-thiophene boronic acid, tetrakis(triphenylphosphine) palladium(0), NaHCO₃ (1 M), DMF, reflux, 10 h, 40%; (d) 4-hydroxybenzaldehyde, K₂CO₃, acetone, reflux, 36 h, 80%; (e) N-methylglycine, C₆₀, chlorobenzene, reflux, 5 h, 52%; (f) FeCl₃ (1:6) (0.05 M), chloroform, 5 h [41].
side-chain bonded fullerenes does not prevent the ordering of the polythiophene main chain at low concentrations. The organization of the polymer is not seriously disturbed even at 14 mol% fullerene in side chains, and the polymer chains are sufficiently mobile to accommodate geometric relaxation upon treatment with chloroform vapor. Rectifying junctions are found in thin film photodiodes, but only after illumination does the photovoltage increase to appreciable values. External quantum efficiencies are moderate, but the spectral coverage can extend to 700 nm in the ordered state of the copolymer. Using different main chains, Ramos et al. [42] prepared a processable π-conjugated polymer with covalently linked methano-fullerenes (Scheme 12). This polymer has very good solubility, and it can be applied via spin coating to form a photoconductive layer. This polymer, led to the first polymer solar cell based on a covalently linked donor–acceptor bulk-heterojunction. Ramos et al. found that photoexcitation of this polymer resulted in an electron-transfer reaction from the conjugated backbone to the pendant C₆₀ moiety. These results indicate that a bicontinuous network of donor and acceptors, confined to a molecular scale, is an attractive approach to new materials for photovoltaic applications. PPV-based C₆₀-containing, conjugated polymers, partly soluble in common organic solvents, have also been prepared in our laboratory [43–45]. A typical synthesis method is shown in Scheme 13 [44]. The polymers contained various percentages of C₆₀. CV analysis showed that the electronic characteristics were retained despite covalent attachment of C₆₀ to the polymer by the cycloaddition reaction. Excited-state properties of PPV-AFCAR were investigated by steady-state spectroscopy and lifetime measurements [45]. After photoexcitation, photoinduced energy transfer from the oligomer chain to the pendant moiety occurred to a large extent, but a charge-separation process did not occur.

Another route to soluble fullerenated polymers by reacting carbanions on polymer chains with fullerenes was suggested by Chen et al. [46–48]. This method of adding C₆₀ to a carbanion-containing polymer chain, such as polystyrene, poly(bromostyrene) and poly(vinylbenzylchloride), begins with an organometalic reaction (Scheme 14). Both the stereo electronic effect and the steric hindrance of C₆₀ have been reported to have significant influences on the structure and physical properties of these polymers. Using carbanions on a polymer chain, Dai et al. [49,50] successfully attached C₆₀ to 1,4-polydiene chains with fullerene buckyballs as the pendant groups.

Scheme 12. Synthesis of conjugated polymer with pendent C₆₀ [42].
As shown in Scheme 15, the grafting reaction involves lithiation of polydiene chains with sec-BuLi in the presence of tetramethyl-ethylenediamine (TMEDA), followed by addition of C$_{60}$ onto the lithiated living polydiene chains. The solubility of the resultant C$_{60}$-functionalized polydiene chains can be varied by changing the molar ratio [sec-BuLi]/[C$_{60}$]. For instance, the C$_{60}$-grafted polydiene materials with [sec-BuLi]/[C$_{60}$] < 1 are highly soluble in most common organic solvents owing largely to the

![Scheme 13. Synthesis of C$_{60}$-containing conjugated PPV copolymer [44].](image)

![Scheme 14. Reaction of C$_{60}$ with poly(N-vinylcarbazole) (PVK) [47].](image)
monoaddition of C_{60}, whereas fullerene crosslinked polymer gels are observed at high molar ratio of sec-BuLi to C_{60} (i.e. [sec-BuLi]/[C_{60}] > 1) [46]. Differential scanning calorimetric (DSC) analyses on the soluble material indicate that the chain rigidity of the polydiene increases slightly upon grafting with C_{60}, but the final product remains thermally processable. The unconjugated polyydiene segments between two adjacent C_{60} pendant groups in the C_{60}-grafted polyydiene chains could be converted into a conjugated structure by an I_2-induced conjugation reaction [51–53].

The first hydrogen-bonded fullerene supramolecular structure from a side-chain fullerene derivative was prepared by Sanchez et al. (Scheme 16) [54]. Interestingly, the chemical integrity of the monomeric moiety, its redox and UV/Vis behavior, is fully preserved in the highly dynamic polymeric state.

2.3. Main-chain fullerene polymers

The first main-chain fullerene polymer was prepared by Benincori et al. [55] via electrochemical polymerization. Subsequently, many papers have been published on such polymers [56–60]. A well-defined main-chain fullerene polymer was prepared by Okamura et al. [57]. Using the reaction of C_{60} with the polystyryl radical, they obtained a well-defined
polymer derivatives of C$_{60}$ from a narrow-polydispersity polystyryl adduct terminated with TEMPO (PS-TEMPO) (Scheme 17), where TEMPO is 2,2,6,6-tetramethylpiperidinyl-1-oxy. They heated PS-TEMPO, which was prepared by nitroxyl-mediated ‘living’ radical polymerization, with C$_{60}$ in o-dichlorobenzene at 145 °C. The C$_{60}$ derivatives thus obtained in 60–80% yield were found to be predominantly 1,4-dipolystyryldihydrofullerenes. The selective production of the bis-adducts in these systems was suggested to be due to a fourfold excess of C$_{60}$ relative to PS-TEMPO in the feed and/or the potential barrier of the PS moieties of the bis-adducts that restricts further addition of PS radicals to the C$_{60}$ moiety. Instability of the C$_{60}$-TEMPO and C$_{60}$ dimers at high temperature might be another reason for the bis-adduct selectivity. The bisubstituted derivatives retained the redox properties of original C$_{60}$. C$_{60}$ reacted with bis-anthracene by Diels–Alder cycloaddition to give a fullerene based copolymer [58]. The addition is fully reversible upon heating to 75 °C, providing a fully thermoreversible polymer. This example shows that this type of fullerene polymer could be used in applications requiring a recyclable and thermally processable.

The first true main-chain fullerene polymer was synthesized by Taki et al. [59]. C$_{60}$ bisphenol was allowed to react with an equimolar amount of dibasic

Scheme 16. Synthesis of hydrogen-bonded fullerene supramolecular polymer. Reagents, reaction condition and percent yield: (a) p-TsNHNH$_2$, EtOH, overnight, Δ, 85%; (b) NaOMe, py, 30 min, RT; then C$_{60}$ in ODCB, 80 °C, 16 h; (c) ODCB, 300 W flood lamp, RT, overnight, 49% (b + c); (d) ODCB, AcOH, HCl, H$_2$O, Δ, overnight, 83%; (e) SOCl$_2$, 1 h; (f + g) NaN$_3$, ODCB,Me$_2$NCOMe, 75 °C, 30 min; (h) 2-amino-4-hydroxy-6-tridecylypyrimidine, py, 100 °C, overnight, 43% (e–h); Ts: tosyl, py: pyridene, Ac: acetyl [54].
acid dichloride at room temperature to afford linear polyesters containing the fullerene moiety in the main chain. Similarly, C₆₀ pearl-necklace polymer, poly(4,49-carbonylbisphenylene-trans-2-fullerenobisacetamide), was synthesized by a direct polycondensation of trans-2-fullerenobisacetic acid with 4,49-diaminobenzophenone in the presence of large excess of triphenyl phosphite and pyridine (Scheme 18) [60]. In these polymers, fullerene ‘pearls’ and diamine linkers were attached to each other by methanocarbonyl connectors. The molecular weight M_w of the polymer was about 4.5×10^4 on the basis of TOF-MS. Another reactive fullerene polymer allowed the incorporation of fullerene units into the polymer backbone of polysiloxanes (Scheme 19) [37]. These polymers show excellent solubility in common solvents and high thermal stability up to about 435 °C. Moreover, the polymers possess good film-forming properties on nonpolar surfaces, which is an important property for many applications. For example, doping of conjugated polymers in photovoltaic cells with fullerenes or fullerene adducts results in dramatically increased quantum yields [61–63].

2.4. Fullerodendrimers

Owing to the capability of dendritic architectures to generate specific properties, dendrimers are attracting increased attention. Fullerenes possess electronic and photophysical properties which make them natural candidates for the preparation of functional
dendrimers. For example, a dendritic framework can surround active core molecules. Thus a dendritic shell can encapsulate a functional core moiety and to create a specific site-isolated microenvironment capable of affecting molecular properties [64]. A variety of experimental techniques have been employed to appraise the effect of shielding the core moiety by the dendritic shell [64,65]. Dendrimers with a fullerene core appear to be appealing candidates to evidence such effects. Effectively, the lifetime of the first triplet excited state of fullerene derivatives is sensitive to the solvent [66]. Therefore, lifetime measurements in different solvents can be used to evaluate the degree of isolation of the central C_{60} moiety from external contacts. A steady increase of lifetimes is found by increasing the dendrimer size in all solvents, suggesting that the dendritic wedges are able to shield, at least partially, the fullerene core from external contacts with the solvent and from quenchers such as molecular oxygen [67]. Furthermore, dendrimers can be used as traps for small molecules or ions with the aim of releasing them where needed (e.g. in biological tissues) [68].

Wooley et al. [69] prepared dendritic fullerene by attachment of poly(aryl ether)-based dendrimer to phenol-functionalized fullerenes (Scheme 20). The benzylic bromide moiety of the fourth-generation dendrimer reacts with the phenolic groups attached to fullerene, and thus two dendrimer building blocks couple with one fullerene to give the fullerene-based dendrimer. Using the cycloaddition reaction of azides with fullerenes, Wooley et al. prepared a new type of fullerodendrimer based on the benzylic bromide moiety of the fourth-generation dendrimer, as above [70]. The final products contained mono- and bisaddition products, but no higher addition products. The failure to obtain tri- or multisubstitution may be due to steric hindrance around the C_{60} nucleus and/or unfavorable electronic conditions after the bisaddition. Rio et al. [71] used a poly(aryl ether) dendrimer to obtain a series of fullerodendrimers (Scheme 21). Systematic changes in the photophysical properties in the series suggest increasing interaction between the poly(aryl ether) dendritic wedges and the fullerene core, which brings about increasing isolation of the central chromophore from the exterior. Rio et al. also incorporated these fullerodendrimers (1–4) into mesoporous silica glasses, and showed that these materials possess efficient optical limiting properties. Recently, Murata et al. [72] synthesized a series of poly(aryl ether) fullerodendrimers, GnC_{60}H (n = 1–4). All the dendrimers were very soluble in common organic solvents. Electrochemical studies indicated that GnC_{60}H (n = 1–4) anions can be electrochemically...
Scheme 20. Synthesis of fullerodendrimer with aromatic polyether dendritic branches [69].
generated and are further reduced to the trianion stage. Anions GnC_{60} ($n = 1$–4) subjected to chemical one-electron oxidation with iodine gave new fullerene dimers carrying a dendrimer unit on each fullerene cage.

A highly water-soluble fullerodendrimer was prepared by Brettreich and Hirsch [73] (Scheme 22). Using electronic absorption spectroscopy, and steady-state and time-resolved fluorescence [74], they studied singlet state fluorescence quenching and found that it originated from the external heavy-atom effect. They prepared another water-soluble fullerodendrimer by a Diels–Alder reaction of C_{60} with an anthryl dendron under extremely mild conditions following the synthesis route in Scheme 23. The results show the anthryl dendron affords a facile, efficient route to the fullerodendrimer. So far most syntheses of fullerodendrimers have been accomplished by means of a Hirsch–Bingel reaction, which requires CBr_4 and DBU as mediator. On the contrary, this approach, which is highly convergent without any reagent, highlights a useful preparation of water-soluble fullerodendrimer under convenient reaction conditions.

A fullerene-containing liquid-crystalline dendrimer was prepared by Dardel et al. (Scheme 24) [75]. This dendrimer showed good solubility in common organic solvents and good thermal stability. It formed an enantiotropic smectic A phase, which was identified by polarized optical microscopy from the observation of typical focal-conic and homeotropic textures. Dardel et al. [76] synthesized another series of liquid-crystalline fullerodendrimers by the addition reaction of mesomorphic malonate-based dendrimers (up to the fourth generation) with C_{60} (Scheme 25) [76]. The cyanobiphenyl unit was used as a liquid-crystalline promoter. The malonates presented nematic and/or smectic A phases. The fullerenes showed only smectic A phases, with the exception of the second generation dendrimer for which smectic A and nematic phases were observed. The supramolecular organization of the fullerene-based molecular units within the smectic A layers was investigated by X-ray diffraction. Two structural regimes were determined. For the low-generation dendrimers, the supramolecular organization is determined by steric factors. For the high-generation dendrimers, the mesogenic groups impose a microphase organization:
owing to lateral extension of the branching part of the molecule, the cyanobiphenyl groups are arranged in parallel fashion as in classical smectic A phases, the rest of the macromolecule being located between the mesogenic sublayers.

2.5. Star-shaped fullerene polymers

Many papers have been published on radical polymerization in the presence of C$_{60}$ [77–80]. A detailed description was given by Chen and Lin [79]. They conducted the radical polymerizations of styrene in the presence of C$_{60}$ at 90 °C in benzene using benzoyl peroxide (BPO) as the initiator. The polymerization process was followed by monitoring BPO concentration, C$_{60}$ content, and polymerization time. It was found that C$_{60}$ acts like a radical absorber which multiply absorbs primary radicals of BPO and the propagating polymer radicals. Therefore, the yield of the polymerization and the molecular weight of
the polymer decrease significantly in the presence of C\textsubscript{60}. However, the molecular weight distribution is narrowed by the coupling characteristics of the reaction. At the beginning of the reaction, chain-propagation is restricted by the radical-absorbing effect of C\textsubscript{60}. However, the number of polystyrene chains added to C\textsubscript{60} increases with polymerization time. Direct dilatometric experiments prove that C\textsubscript{60} acts mainly as an inhibitor for radical polymerization of styrene initiated by BPO. Besides, the glass transition temperature \(T_g\) of the copolymers increases with increasing content of C\textsubscript{60}. The final polymer is usually star-shaped (Scheme 26). Direct fullerenation of polycarbonate (PC), a commercially important optical polymer, can also yield star-shaped fullerene polymers. By simply irradiating a solution of PC and C\textsubscript{60} at room temperature using a conventional UV lamp, or by warming a C\textsubscript{60}/PC solution to 60 °C in the presence of AIBN, Tang et al. obtained a series of star-shaped fullerene PC [39] polymers. The extent of

Scheme 23. (1) Synthesis of antryl dendrons (1a–c); (2) preparation of fulleodendrimer (2a–c) [74].
fullerenation is controllable by varying the C$_{60}$ feed ratio, and fullerenated PC with C$_{60}$ content as high as 6.3 wt% (more than two C$_{60}$ molecules per PC chain) is readily prepared in almost quantitative yield (99.7%). The molecular weight of the fullerenated PC is higher than that of the parent polymer, suggesting that the fullerenation proceeds by multiple additions to C$_{60}$, leading to a star-shaped molecule. The fullerenation involves a radical mechanism, and its general applicability to other polymer systems is demonstrated by the attachment of C$_{60}$ to poly(vinyl chloride).

Fullerenols containing multiple hydroxy groups can be used to synthesize urethane-connected polyester star-shaped polymers [81]. Chiang et al. [81] first treated fullerenol with a diisocyanato-urethane polyether, following this by a termination reaction with urethane-connected polyether (Scheme 27). To completely eliminate the crosslinking reaction, they used an excess of the bifunctional isocyanate prepolymer (10 NCO group per each OH group of fullerenol). At the end of the reaction period, the intermediate mixtures were allowed to react further with dodecane-1-ol or 2,2'-dichloroethanol. Comparing the average molecular masses of arm chains (M_n 2600 and M_w 5450, polydispersity 2.11) and of the star-shaped polymer (M_n 18,000 and M_w 26,100, polydispersity 1.45), they found that one fullerenol-based star-shaped polymer contained six linear urethane-connected polymer arms on average. Wang et al. also prepared star-shaped polymers by reacting polyurethane with fullerenol [82]. The polymers exhibited enhanced thermal stability in comparison with the corresponding linear polyurethane and analogous elastomers crosslinked with 1,1,1-tris(hydroxymethyl)ethane.

Addition of living anionic polymers to C$_{60}$ may offer unique opportunities to control the number of grafted chains on the fullerene, such as the molecular mass, and the polydispersity. Ederle and Mathis [83] showed that, when conducted under high-purity conditions, the addition of living anionic polymers can be controlled and used to prepare adducts with well-defined structures. In toluene, star-shaped polymers with up to six branches, from low to high mass, can be produced by using reactive carbanions such as styryl or isopropenyl. The number of additions to C$_{60}$ (three to six) was controlled by stoichiometry. They
Scheme 25. C₆₀-containing dendrimers [76].
also studied the influence of C\textsubscript{60} anions to initiate living polymerization of PS or PMMA. They found that C\textsubscript{60}3+(K+)\textsubscript{3} did not initiate polymerization of St or MMA [84] and that C\textsubscript{60}6− did not initiate polymerization of PS, but did initiate polymerization of MMA. Making the reaction ratio [PSLi]:[C\textsubscript{60}]:1, Mathis and co-workers [85,86] obtained fairly pure star-shaped polymers with six branches and six carbanions located on the fullerene core. Of these six carbanions, only one is able to initiate anionic polymerization of styrene or isoprene to produce well-defined palm-tree-like architectures (Scheme 28a). At the final stage of the reaction, the out-growing chain end bears a carbanion that can be reacted with a coupling agent (dibromo-p-xylene or dibromohexane) to produce dumbbell-like structures (Scheme 28b). If C\textsubscript{60} itself is allowed to react with the living palm tree, a third fullerene molecule is introduced at the center of the macromolecule. Mathis et al. [87] further studied the thermal stability of the bond between the fullerene and a grafted chain. At temperatures around 100 °C, the hexa-adduct is slowly converted into lower-arm adducts; i.e. the experimental results are coherent with a step-by-step mechanism where the six-arm stars are converted to five-arm stars, then to four-arm stars and so on, the kinetic constant decreasing as the functionality of the stars decreases. They also found that the thermal stability of the polymer decreases as the length of the grafts increases. Using the anionic polymerization and appropriate post-linking polymerization, a graft block copolymer chain can be obtained, such as the poly(styrene-g-isoprene) chain [88]. Using the same strategy, Mignard et al. [89] prepared two types of hexa-arm star copolymers with
the aim of obtaining materials with different macroscopic properties. **Scheme 29** shows the overall synthetic routes to C_{60}(St-PCHD-PS)$_6$ and C$_{60}$(St-PPP-PS)$_6$ (six-arm star-shaped polymers). In this reaction, the authors found some benefits from the star-shaped structures: (1) C$_{60}$ was observed to control the limiting number of grafted polymers up to six. (2) The use of a PS ‘shell’ around the highly conjugated PPP segments enables the polymers to dissolve easily in common organic solvents. The good photoconductivity of these systems may provide a starting point for the design of photovoltaic devices. Anantharaj et al. (**Scheme 30**) [90] prepared another six-arm star-shaped fullerene polymer from hexanitrofullerene as a precursor. With chemically attached multiple oligoanilines on the C$_{60}$ molecular core, the resulting starburst poly(oligoanilinated) fullerenes exhibit efficient three-dimensional intermolecular electron transport or hopping behavior among doped oligoanilino arms.

Using the living free radical technique (iniferter), He et al. (**Scheme 31**) [91] synthesized starlike C$_{60}$-bonding polymers. They used C$_{60}$ with pendant N,N-diethyldithiocarbamate groups (C$_{60}$-SR) as a polyfunctional photoiniferter. The photopolymerization proceeded by a living-radical mechanism and gave soluble polyfunctional polymers (photoiniferters). These star-shaped fullerene polymers could be used

![Scheme 28. ‘Palm tree’ (a) and ‘dumbbell’ (b) polymers based on C$_{60}$ [85,86].](image)

![Scheme 29. Overall synthetic routes to 6-star-fullerene[styrene-block-poly(1,3-cyclohexadiene)-block-polystyrene], C$_{60}$(St-PCHD-PS)$_6$, and 6-star-fullerene[styrene-block-poly(1,4-phenylene)-block-polystyrene] C$_{60}$(St-PPP-PS)$_6$ [89].](image)
as excellent crosslinking agents. Similarly, Tang et al. [92] prepared star-shaped fullerene polymers by the addition of C\textsubscript{60} to WCl\textsubscript{6}–Ph\textsubscript{4}Sn, to convert the WCl\textsubscript{6}–Ph\textsubscript{4}Sn from a poor to an effective initiator for phenylalkyne polymerization. While polymerization of 1-phenyl-1-butyne (PB) initiated by WCl\textsubscript{6}–Ph\textsubscript{4}Sn at room temperature yields only small amounts of polymer (0.05–5.3%) with low molecular weight (\(M_n\) 8000–15,000) and narrow polydispersity index (PDI up to 1.09), addition of C\textsubscript{60} to the initiator mixture

Scheme 30. Synthesis of hexa(oligoanilinated) C\textsubscript{60} [90].

\[
\begin{align*}
\text{O}_2 & \quad \text{vii} \\
\text{O}_2 & \quad \text{vii}
\end{align*}
\]

Scheme 31. Synthesis of starlike C\textsubscript{60}-binding polymers [91].

\[
\begin{align*}
\text{X} & \quad \text{X} + \text{NaSR} \quad \Delta \rightarrow \text{RS} \\
\text{RS} & \rightarrow \text{RS} \\
\text{RS} & \rightarrow \text{RS} \\
\text{RS} & \rightarrow \text{RS}
\end{align*}
\]

Polymer arm

\[
\begin{align*}
\text{RS} & \\
\text{RS} & \\
\text{RS} & \\
\text{RS} & \\
\end{align*}
\]

\[
\begin{align*}
\text{S} & \quad \text{C} \quad \text{N} \quad \text{C}_2\text{H}_5 \\
\text{S} & \quad \text{C}_2\text{H}_5
\end{align*}
\]
dramatically boosts initiation activity, producing polymer with high M_n (up to 171,000) and broad PDI (larger than 2.2) in high yield (up to 99.5%). The resulting polymers consist of polyacetylene chains and covalently bound C$_{60}$ cages (up to 9.1 wt%). The molecular weights of C$_{60}$-PPBs are much higher than that of the pure poly(1-phenyl-1-butyne) (PPB), suggesting multiple additions of PPB chains to one C$_{60}$ cage. Upon photoexcitation the star-shaped C$_{60}$-PPBs emit strong blue light, which can effectively attenuate the power of a pulsed laser beam. Their saturation fluence is much lower than that of C$_{60}$ at similar linear transmittance.

2.6. Fullerene end-capped polymers

The first mono-C$_{60}$-end-capped polystyrenes were prepared by reaction of amino-terminated polystyrene with C$_{60}$ (Scheme 32) [93]. These polymers could easily be processed to homogeneous, transparent films containing up to 27 wt% C$_{60}$, and no microphase or nanophase separation was observed. Tang et al. [92] prepared mono-C$_{60}$-end-capped PPB by polymerization of 1-phenyl-1-propyne (PP) initiated by WCl$_6$–Ph$_4$Sn with C$_{60}$ in the initiator mixture. Compared with the parent C$_{60}$, these polymers show better optical limiting performance. Using the reaction of TEMPO (4-hydroxyl-2,2,6,6-tetramethylpiperdinyloxyl)-terminated polystyrene with C$_{60}$, we prepared narrow-polydispersity mono-C$_{60}$-end-capped polystyrene in our laboratory [94]; we also found these polymeric derivatives to exhibit very good photoconductivity. Zhou et al. [95,96] prepared mono-C$_{60}$-end-capped PST (PSt-C$_{60}$-Br) and PMMA (PMMA-C$_{60}$-Br) under atom transfer radical polymerization (ATRP) conditions by reacting C$_{60}$ with bromo-terminated polystyrene (PSt-Br) and poly(methyl methacrylate) (PMMA-Br) with designed molecular weights and narrow molecular weight distributions. The fluorescence of PMMA-C$_{60}$-Br and PSt-C$_{60}$-Br is quenched by triethylamine or fumaronitrile, which indicates that C$_{60}$ still retains its strong electron-accepting and electron-donating properties after modification by macromolecules. Zhang et al. also studied the self-assembly properties of this type of polymeric C$_{60}$ derivative in solution [97]. They observed two narrow distributions by DLS with hydrodynamic radii 29.5 and 1.3 nm, which they

Scheme 32. A polystyrene-based copolymer with C$_{60}$ termini (DMCS is dimethyl-carbosilane) [93].
attributed to aggregates and single polymer molecules, respectively. In GPC elution diagram, two distributions were also observed, and attributed to the aggregates and the single hammer-like polymer.

Using conducting polymer to prepare mono-C_{60}-end-capped polymer is also a very interesting project, Gu et al. prepared mono-C_{60}-end-capped oligophenylenevinylene (OPV) [98]. The synthesis procedure is depicted in Scheme 33. This molecular approach appears to be particularly interesting for solar energy conversion, since the bicontinuous network obtained by chemically linking the hole-conducting OPV moiety to the electron-conducting fullerene subunit prevents any problems arising from bad contacts at the junction, as observed in polymer/C_{60} blends. Furthermore, this new synthetic approach also offers great versatility for tuning the photovoltaic system. Interestingly, increasing the donor ability of the conjugated oligomer substituents due to the presence of the aniline group, increases the efficiency and sensitivity of photovoltaic devices by an order of magnitude.

Mono- and bi-C_{60}-end-capped PEOs were prepared using the reaction of the azide group with C_{60} [99,100]. First, the hydroxyl groups of PEO were converted to chlorine groups through reaction with thionyl chloride.

The chloro-terminated PEO was then reacted with sodium azide to form azido-terminated PEO, which subsequently underwent a cycloaddition reaction with C_{60} to afford C_{60}-end-capped PEO. Martineau et al. [101] prepared various (mono-, bi- and tri-) C_{60}-end-capped oligothienylenevinylene (nTVs) (Scheme 34). They studied electrochemical and optical properties, and found the band gap of the highest occupied molecular orbital and lowest unoccupied molecular orbital (LUMO) to be small enough for light harvesting in organic photovoltaic devices. Cloutet et al. [102] reported a hexa-C_{60}-end-capped star polymer. Functionalization of six branch termini of a star polymer with azido and amino groups led to a functional polymeric product that was further reacted with C_{60} to furnish hexafullerene star polymer (Scheme 35).

2.7. Immobilization of fullerene on solid surfaces

Fullerene-based thin films on solid surfaces are of high interest because of the possibility of transferring the distinctive fullerene properties to bulk materials by surface coating.

One method is to immobilize amine groups on indium tin oxide (ITO) surfaces and then react the...
amine groups with C\textsubscript{60} \cite{103}. Another method is to attach covalently a pyridyl-terminated, self-assembled monolayer of C\textsubscript{60} to a silicon oxide surface \cite{104}. After immobilization of (11-bromo-undecanyl) trichlorosilane on the surface of quartz or Ge/Si multilayer substrates and reaction with OsO\textsubscript{4} in toluene, C\textsubscript{60} is allowed to react and thus to produce a coordination complex. Covalent attachment of C\textsubscript{60} onto a functionalized polyethylene film also has been described \cite{105} as follows. Diphenylmethyl-terminated oligomers are prepared by reaction with 1,1-diphenylethylene followed by protonation. A film containing about 3 wt\% of the oligomers is formed by spin casting. Treatment the film with n-BuLi-TMEDA (N\textsubscript{0},N\textsubscript{0},N\textsubscript{0},N\textsubscript{0}-tetramethylethylenediamine) leads to a lithiated film, which is then reacted with C\textsubscript{60}.

Silicon alkoxide functionalized fullerenes can be profitably used in the preparation of HPLC stationary phases \cite{106}. The silicon alkoxide group, in fact, guarantees chemical grafting to silica (Scheme 36). Standard chromatographic tests with simple aromatic compounds reveals that the modified stationary phase affords high efficiency both in organic and water-rich media. Specific interactions with complex solutes are capable of establishing multipoint contacts with the spheroidal fullerene. Accordingly, exceptionally high size-selectivities are obtained for cyclic oligomeric compounds like calixarenes and cyclodextrins in organic and water-rich media. A number of helical peptides, containing hydrophobic cavities complementary in size to C\textsubscript{60}, bind selectively to the grafted fullerene.

2.8. Crosslinked fullerene polymers

Photochemical addition of C\textsubscript{60} to furan derivatives has been used to prepare crosslinked furan-containing polymers. A polymer having furan units on the side chains was synthesized by the reaction of poly(2-hydroxyethylmethacrylate) with 2-furoic chloride \cite{107}, and then a 1,1,2,2-tetrachloroethane solution of the polymer was exposed to visible light in the presence of C\textsubscript{60}. The solution turned to a gel after 10 h and then solidified completely. This photo-crosslinking process was applied to a photoresist with sensitivity in the visible region. The first example of
Scheme 35. Hexafunctional star adduct and hexafullerene star polymer [102].
micron-size photolithographic patterning was achieved using the furan-containing polymer/fullerene system. Another interesting photosensitive system, ethylidene norbornene with C₆₀, was prepared by Jiang et al. [108]. A cast film of EPDM (ethylene–propylene ethylidene norbornene terpolymer) containing C₆₀ kept in the dark remains soluble but exposure to light results in a crosslinked rubber (Scheme 37). A highly uniform photoconductive film can be obtained from the solution.

Under high pressure, crosslinked C₆₀-containing polymer has also been synthesized by free radical polymerization of styrene and C₆₀ [109]. Fig. 1 shows the pressure dependence of the fraction of insoluble product in chloroform. This fraction has a maximum value at about 0.5 GPa. The insoluble product synthesized under 0.3–0.5 GPa was swollen in chloroform. The degree of swelling in chloroform (weight ratio of the swollen sample to the dry sample) was 28–34. Polystyrene synthesized under high pressure contained no insoluble material.

Controlled three-dimensional structures including C₆₀ molecules as nodes were described by Nuffer et al. [110] (Scheme 38). For this synthesis, THF soluble C₆₀(K⁺)₂ was reacted with living polystyrene chains bearing a carbanion at each end. The use of the fullerene dianion is necessary to avoid complications originating from electron transfer from the carbanions to C₆₀. In the same paper, Nuffer et al. also developed a method to increase the functionality of the nodes by reacting C₆₀ with high-functionality polystyrene stars with each branch bearing a carbanion at its end.

2.9. ‘All-fullerene’ polymers

‘All-fullerene’ polymers refer specifically to structures in which fullerene cages are directly connected covalently. In 1993, Rao et al. [111] first reported that solid C₆₀ film undergoes a photo transformation reaction when exposed to visible or ultraviolet light to yield toluene-insoluble species, which were characterized as all-fullerene polymers formed by [2+2] cycloaddition between neighboring C₆₀ molecules. In later studies, many methods have been used to polymerize fullerenes [112], including
photopolymerization [113–116], electron beam-induced polymerization [117,118], pressure-induced photopolymerization [117–120], and plasma-induced polymerization [121,122]. These fullerene structures include one-dimensional (linear chain), two-dimensional, and three-dimensional polymers.

Usually, synthesis of all-fullerene polymers is difficult; the synthesis methods usually entail specific physical conditions [123–125]. Following their discovery that C\(_{60}\) can form stable clusters in a solvent mixture, Ma and co-workers [123–125] synthesized high molecular weight polyfullerenes by photochemical reactions of C\(_{60}\) clusters in carefully deoxygenated toluene–acetonitrile solutions at room temperature. These authors believe that the photochemical reaction of fullerene clusters most likely follows the same mechanism as the phototransformation of solid fullerene films (Scheme 39). Crosslinking of fullerene molecules is assumed to occur through a photochemical \([2+2]\) cycloaddition reaction in excited triplet states of the fullerene. The involvement of excited triplet states is supported by the fact that the photopolymerization does not occur in air-saturated fullerene cluster solutions. The excited singlet-state lifetime of C\(_{60}\) is ca. 1.2 ns. This short lifetime is due to rapid and efficient intersystem crossing to form excited triplet states. The triplet states of C\(_{60}\) are much longer-lived (40–50 s), so that quenching due to dissolved oxygen is substantial. The structure of the polymers is probably random. There seems to be no

\[
\begin{align*}
2 \text{C}_{60}^{-} + C_{60} & \rightarrow C_{60}^{2+}(K^+)_2 \\
2 \text{K}^+ + \text{Styrene} & \rightarrow \text{PS}^{2-}(K^+)_2 \\
C_{60}^{2+}(K^+)_2 + \text{PS}^{2-}(K^+)_2 & \rightarrow
\end{align*}
\]

Scheme 38. Schematic representation of a network formed by reacting \(C_{60}\) with living polystyrene [110].
fundamental differences among the polymers generated from C_{60} clusters. Also, the polyfullerenes and the clusters from which the polymers are of comparable sizes, which suggest that the photopolymerization is primarily due to intracluster reactions.

In 2000, Sun and Reed reported a novel method of obtaining a linear polymer of C_{60} cages by a crystal engineering method [126]. The co-crystallate of C_{60} and a calixarene [127] was packed in octahedrally shaped MgO containers and wrapped with Re foil for heating. The pressure was increased gradually to the desired value of 5 GPa over a 30 min period followed by 1 h of heating at 200 °C. The black obsidian-like product was proved by spectroscopic methods (energy dispersive X-ray spectroscopy, IR, and Raman) to be linear (C_{60})_n with symmetrical [2 + 2] addition linkages (Scheme 40). The authors suggested that the linear C_{60} polymer they obtained could not be considered a nanowire but rather functioned as a nanofuse.

Cataldo [116] studied the photopolymerization of C_{60} in CCl_4, CH_2Cl_2, cyclohexane, and decalin. Irradiation of the C_{60} solutions under nitrogen flow produced C_{60} photopolymers, the structure of which was comparable to that of C_{60} photopolymers prepared by solid-state photopolymerization or by C_{60} piezopolymerization (polymerization under high pressure). Cataldo also investigated the role of oxygen as a photopolymerization inhibitor in cyclohexane and in the formation of oxygenated photopolymers in halogenated solvents. He reported that at \(\lambda > 265 \) nm, CCl_4 is photolysed and plays a role in promoting photopolymerization, while for \(\lambda > 300 \) nm no interference from CCl_4 occurs.

Scheme 39. Suggested mechanism of photopolymerization of C_{60} in solution [114].

Scheme 40. C_{60} linear polymer [127].
3. Fullerene doped polymers

3.1. Fullerene doped conducting polymers

3.1.1. General aspects

Conducting polymers have attracted much interest owing to the drastic changes of electrical, optical and magnetic properties caused by doping. Many scientists are working on synthesizing new conducting polymers and searching for new effective and stable dopants [128–131]. Thus far, various compounds, such as halides, metal halides, and Lewis acids have been used as p-type dopants in conducting polymers [132]. Skugimoto and Takeda [131] found that a large-size dopant can improve the stability of a doped system. Thus the search for new large-size dopants seems to be quite important. That the C60 molecule can withdraw up to six electrons from an alkali metal reflects its very strong electron affinity and suggests it as a potential electron-acceptor candidate in organic solids and conducting polymers.

When C60 was doped into conducting polymer, two cases were found: (i) Marked changes in absorption spectra, obvious quenching of photoluminescence, slight enhancement of conductivity, and slight changes in ESR spectra—which suggested effective doping in the ground state [133]. In this case, the electronic wave functions of polymer and C60 were mixed to some extent in the ground state. (ii) Small changes in the absorption spectra, conductivity, and ESR signal, with obvious quenching of photoluminescence and enhancement of photoconductivity—which indicated ineffective doping in the ground state [134,135]. A photoinduced charge-transfer effect can be observed [134] in these systems. Till now, the latter case has been extensively studied in physics, chemistry, biology, and in the areas of overlap between the traditional disciplines, because theoretical studies in photophysics and photochemistry can provide an approach to deeper understanding of solar energy conversion in green plants [136].

3.1.2. Effective doping systems in the ground state

When C60 is doped into certain conducting polymers, such as poly(3-alkylthiophene) (PAT) and polyaniline, the electronic functions are mixed significantly in the ground state and absorption spectra are changed [133,137]. Fig. 2 shows absorption spectra of PAT film doped with various concentration of C60. The high-energy peak originating from the interband transition is suppressed by doping and a new absorption peak evolves in the near infrared region around \(E = 1.1 \) eV with increasing C60 concentration. The new absorption peak is a typical indicator of the forming of a ground-state charge-transfer complex. The suppression of the interband absorption may be explained by transfer of electrons from the conjugated chain of PAT to C60 in the ground state. Morita et al. [133] considered that the strong electron–lattice interaction in the one-dimensional system would dramatically modify and distort the conjugated polymer system, and that polarons \(P^+ \) or bipolarons \(BP^{++} \) would be formed. Therefore, the density of states in the upper energy range of the valence band would be decreased, resulting in suppression of the interband absorption, especially in the lower energy range. They proposed the energy diagram in Fig. 3, which shows that transfer of free electrons between the rigid bands (those relatively insensitive to doping) of C60 and PAT is nearly impossible since charge-transfer (CT) requires positive energy \(\Delta_{CT} = 0.1–0.2 \) eV. However, charge-transfer from polymer to C60 may occur if polaronic effects are taken into account, both in the polymer (P+ level \(\sim 0.2 \) eV, while BP++ \(\sim 0.7 \) eV above the valence band top [138]) and in C60 molecules. In C60 a shape deformation effect [139,140] will lead to splitting of the threefold degenerate LUMO of C60 in the ionic...
state due to polaronic distortion; in other words, Jahn–Teller distortion will occur. In the latter case the t_{1u} level should split into three levels of different symmetries as sketched in Fig. 3, and the transferred electron should occupy the lowest split level. Moreover, it has been reported [141] that, in weak doping with slightly positive CT energy, the Coulomb attraction of the P^+ polaron and the dopant can additionally stabilize the charge transfer due to the creation of polarons P^+ in the ground state with C_{60}, even if Jahn–Teller or polaronic gain (which is still not found experimentally) is not as large as estimated in Ref. [139]. In this system, quenching of photoluminescence was also confirmed. It is believed that this is due to a rate of energy transfer from polymer to C_{60} much larger than the reciprocal lifetime, 10^7 s$^{-1}$ [142,143]. Polyaniline/C_{60} composites were prepared either by solid-state blending of both components or by the introduction of fullerene during polymerization of aniline [137]. FTIR spectroscopy indicates strong interaction between polyaniline (PANI) and fullerene in the ground state. The characteristic polaron $C–N^+$ band of PANI appears at 1240 cm$^{-1}$. Conductivity of pure PANI is low. After doping with C_{60}, the conductivity of PANI increases almost three orders of magnitude. The same conductivity level was reported for PANI/C_{60} composites prepared by a standard method using solution blending in NMP solvent [144].

More studies have been reported on similar systems, such as poly(3-octylthiophene) (P3OT) doped with C_{60} [145]. A large change in the P3OT/C_{60} absorption spectrum was reported, indicating significant mixing of the P3OT and C_{60} ground-state electron wave functions [128]. It is believed that the interaction between P3OT and C_{60} is not a full charge separation $D^+–A^−$ (D for donor, A for acceptor), but rather a partial charge transfer in the ground state, $D + A → D^{\delta^+} + A^{\delta−}$, since no C_{60} anion signal can be observed in ESR. Later, near steady-state photoinduced absorption (PIA) spectroscopy was used to study the P3OT/C_{60} composite, and a significant change of PIA was observed. Under the photoinduction conditions, full charge separation occurred and resulted in the formation of both $P3OT^{++}$ (P^{++}) and $C_{60}^{−}$. Steady-state light-induced electron-spin resonance (LESR) provides the evidence that $C_{60}^{−}$ is formed upon photoexcitation. Fig. 4 shows two spin signals, in which the $g = 2.000$ spin with $\Delta H_{\text{FWHM}} = 4$ G is assigned to the P3OT polaron radical (donor cation radical), and the $g = 1.9935$ spin with $\Delta H_{\text{FWHM}} = 3.7$ G is assigned to the $C_{60}^{−}$ anion radical. Accumulative effect of the charged separated upon successive illumination cycles is not observable, implying a short lifetime for the charge-separated configuration.

Recently, Marumoto et al. studied regioregular PAT (poly(3-alkylthiophene))/C_{60} composite [146].
They observed two transient LESR signals below 200 K, due to photoinduced electron transfer between PAT and C60. Marked enhancement of the LESR signals in the excitation spectrum near 1.8 eV was found as compared with pure regioregular PAT. This is consistent with the enhancement of the photoconductivity at about 1.8 eV, where an optically forbidden transition of C60 occurs. The spin–lattice relaxation time of the polaron spins of PAT is at least approximately 18 times longer than that of C60 as determined from the inhomogeneous broadening of the ESR line by hyperfine interactions. Prompt and persistent LESR signal components are observed in the transient response of the LESR signal (Fig. 5). The prompt contribution shows a monotonic increase with increasing excitation light intensity, while the persistent contribution is independent of excitation intensity owing to the deep traps of the photogenerated polarons.

Luzzati et al. [147,148] prepared random copolymers of 3-butylthiophene and 3,4-dibutylthiophene in various ratios. The steric hindrance of 3,4-dibutylthiophene units induces a twist of the conjugated backbone. The degree of conformational disorder increases with increasing fraction of bisubstituted monomer in the copolymer together with a reduction in the conjugation length and consequent blue shift of the absorption–emission spectrum. Luzzari et al. found the energy gap of the copolymers to be tunable. The photoluminescence and steady-state photoinduced spectra (PIA) prove that there is electron transfer from the photoexcited copolymer to C60. The efficiency of charge transfer depends on the miscibility of the two components, which is easily controlled by varying the copolymer composition.

Based on the above, it can be concluded that the interaction mechanism in this type of conducting polymer (D) with C60 (A) is the following:

Step 1: charge transfer in the ground state: $D + A \rightarrow (D^{\delta+} - A^{\delta-})$.

Step 2: photoinduced ion radical pair formation: $(D^{\delta+} - A^{\delta-})^* \rightarrow (D^{+} - A^{-})$.

Step 3: charge separation: $(D^{+} - A^{-}) \rightarrow D^{+} + A^{-}$.

In these reactions, the donor and acceptor units are spatially close, but are not covalently bonded. At each step, the D–A system can relax back to the ground state, either by releasing energy to the ‘lattice’ in the form of heat or by emitting light, provided the radiational transition is allowed.

3.1.3. Other doping systems in the ground state

3.1.3.1. Photoinduced charge-transfer systems. A photoinduced charge-transfer system has little or no mixing of electron wave functions in the ground state. Unless it is ‘short circuited’ by a faster mixing process, the photoinduced charge-transfer can take place whenever the donor–acceptor couple satisfies the inequality, $I_{D^*} - A_A - U_C < 0$, where I_{D^*} is the ionization potential of the excited stated D^* of the donor, A_A is the electron affinity of the acceptor, and U_C is the coulomb energy of the separated radicals (including polaronization effects). A typical example of such a system is the PPV/C60 composite. Sariciftci et al. [149] found that the spectrum of the poly[2-methoxy, 5-(ethyl-hexyloxy)-p-phenylene vinylene/C60], [(MEH-PPV)/C60], composite film is a simple superposition of the two components without any indication of new states below the $\pi-\pi^*$ gap of the conducting polymer. Thus there is little or no interaction between the two materials in the ground state. They also found that the strong photoluminescence of MEH-PPV is
quenched by a factor of more than 10^3, and that the luminescence decay time is reduced from $\tau = 550 \text{ ps}$ to $\tau \ll 60 \text{ ps}$ (the instrumental resolution), indicating a rapid quenching process. They proposed that the luminescence is quenched by rapid electron transfer from MEH-PPV to C_{60}. They estimated the electron-transfer rate to be faster than 10^{12} s^{-1} [149]. In addition, the PIA experiment is consistent with rapid photoinduced charge transfer. The definitive evidence of charge transfer and charge separation is obtained by LERS upon illuminating the (MEH-PPV)/C_{60} composite film with light of $h\nu = E_{m-p^*}$, i.e. the energy gap of the MEH-PPV component. Two photoinduced ESR signals can be resolved, one is at $g = 2.000$ and the other is at $g = 1.995$ [11]. The higher g-value is assigned to the MEH-PPV cation radical (polaron) and the lower g-value line is attributed to the C_{60} anion radical. Similar results have been reported for MDMO-PPV/C_{60} composites by Zoriniants [150].

Doping C_{60} in polymers such as poly(p-phenylene vinylene) (PPV) can improve the photo-voltage response dramatically [151,152]. If dopant C_{60} traps the electrons that are photogenerated in the polymer for less than 1 ps [152,153], geminate electron–hole recombination will be eliminated. Then the hole recombination rate and photoconductivity along the polymer chains will be increased dramatically [152]. Hence, in pure and C_{60}-doped polymers, the holes are the majority photocarriers, while the minority-carrier electrons remain trapped in the fullerene molecules. Recently, Balberg et al. [154] reported that the unipolar or bipolar action can be ‘tuned’ by the C_{60} content C_f (i.e. C_{60} per polymer repeat unit) in polymer/C_{60} composites. In the system they studied, for $C_f \leq 0.05$ or $C_f \geq 0.43$, the transport was unipolar. However, for $C_f = 0.11$, very clear bipolar behavior with apparent coupling of the recombination in the two carriers systems was found. In this composite, the very sharp peak in the conductance and photoconductance at 250 K, which results from the well-known phase transition in C_{60} films, confirms the continuous nature of the C_{60} network [155–157]. On the other hand, the high polymer content ($1 - C_f = 0.89$) assures that the polymer system also forms a continuous network. These observations indicate clearly that only a polymer/C_{60} composite, in which both components form continuous networks (Fig. 6) can exhibit the observed bipolar behavior.

Some other systems, such as phenylmethyl polysilane (PMPS)/C_{60} composites [142,158], have also been reported. The electroabsorption spectrum of the composite film was measured in ground state and no evidence of charge-transfer transition was found. When light with $h\nu > 2 \text{ eV}$ illuminates the composite film, a photoinduced charge-transfer takes place. Here, it is necessary to note that polysilanes are a unique class of photoconductive polymers, with the backbone consisting entirely of tetrahedrally coordinated silicon atoms. There is extensive delocalization of σ-conjugation along the silicon chain, causing improvements to many interesting electronic properties [159,160]. Thus carrier transport along the silicon backbone is very efficient. The hole mobility, about $10^{-4} \text{ cm}^2/\text{V} \cdot \text{s}$ [161–163], is the highest observed in the polymers studied. In spite of this hole mobility, the photoinduced charge-generation efficiency in polysilane is low [161]. Several doping experiments using organic donors and acceptors did not enhance the charge-generation efficiency significantly, but doping with does enhanced the charge-generation efficiency greatly and makes fullerene-doped polysilane one of the leading polymeric photoconductor candidates. Recently, Mikhailova et al. [164] reported that the doping of fullerene into polyimide film could increase the carrier mobility in photoconduction 10-fold as compared with fullerene-free polymer films.

Electron transfer processes in solution are quite different from those in solid films. Photoinduced
electron transfer reactions between C₆₀ and poly(N-vinylcarbazole) (PVK) in polar benzonitrile solution have been investigated by observing the transient absorption bands in the visible and near-IR regions [165]. In polar benzonitrile solution, the charge-transfer complex of C₆₀ and PVK is responsible for the generation of photoinduced carriers; and several photoinduced electron transfer processes other than photoexcitation of a charge transfer complex were found in these systems. The contribution of these processes to the charge generation should depend largely on experimental conditions: e.g. the nature of the medium and the excitation wavelength.

Incompatibility of C₆₀ and a conducting polymer will strongly influence film properties and photoinduced charge transfer processes. Many papers [166–169] have been published on functionalized C₆₀ with solubilizing side chains. The most common conjugated polymer is MDMO-PPV and the fullerene derivative is PCBM (Scheme 41). Dyakonov et al. [166] reported detailed studies on MDMO-PPV/PCBM composites using light-induced electron-spin-resonance (LESR) technique. Two overlapping LESR lines are observed, from positive polaron on the polymer chains and negative charges on the fullerene moieties. Microwave power saturation shows different relaxation times for these two spins, ruling out spin-exchange correlations and giving clear evidence of independent spins. The unusually high relaxation rate of the fullerene monoanionic spins is of intrinsic origin. Further, Dyakonov et al. observed two distinct contributions to LESR signals: a prompt one and a persistent one. The excitation light intensity dependence of the prompt contributions to the $P^+\cdots C_60^-$ ESR signals is of the bimolecular type ($I^{0.5}$), and implies mutual annihilation of the created ($P^+\cdots C_60^-$) pair. The persistent contribution is independent of excitation intensity, and is proposed to originate from deep traps due to disorder. Further results have been reported on this composite by De Cuester et al. [167]. After illumination, two radicals in the sample are formed. One is the remaining positive polaron P^+ on the polymer backbone and the other is the C_61^- radical anion (Fig. 7). Brabec et al. [168] reported ultrafast spectroscopic studies using optical excitation of the above system by sub-10-fs pulses. Phonon modes which are strongly coupled to the electronic excitation of the conjugated polymer are directly observed as coherent oscillations during the pump-probe experiment, mirroring the resonant/nonresonant Raman spectrum of the conjugated polymer. For the first time, the kinetics of this charge transfer process were time resolved with a forward transfer time of around $\tau_{cf}\sim 45$ fs. In a study of efficiency of solar cells, Padingger et al. [169] found that addition of up to 10% of conventional polymer to the electroactive composite is possible without lowering the efficiency of the device.

Recently, the Meijer group [170,171] synthesized a functional supramolecular hydrogen-bonded p-conjugated polymer that exhibit true macroscopic polymeric properties. A photoinduced charge-separated state was generated within spin-coated blends of the supramolecular polymer with PCBM, and promising photovoltaic devices were obtained. These results create multiple possibilities for using supramolecular architectures in electronic devices in which the well-defined character of p-conjugated oligomers is combined with the material properties of polymers.

Through molecular design, the energy gap and electronegativity can be controlled. Conducting
polymers with a range of ionization potentials and electron affinities can be synthesized [172]. Considering the breadth of opportunity associated with this class of materials, it is important to establish the universal mechanism of photoinduced charge-transfer from conjugated polymer to C₆₀. The process can be described as follows (Scheme 42).

Step 1. Excitation of D:D + A → D⁺ + A
Step 2. Excitation delocalization on the complex: D⁺ + A → (D–A)*
Step 3. Charge transfer initiation: (D–A)* → (D⁺–A⁻)*
Step 4. Ion radical pair formation: (D⁺–A⁻)* → (D⁺A⁻)⁻
Step 5. Charge separation: (D⁺A⁻)⁻ → D⁺ + A⁻

3.1.3.2. Nonphotoinduced charge-transfer system. A nonphotoinduced charge-transfer composite poly[1,6-heptadiene]/C₆₀, was studied by Yoshino et al. [135]. Its absorption spectrum was a simple superposition of the spectra of the two components and the PIA spectrum showed no significant change upon mixing with C₆₀. Because PHDK has no detectable luminescence, luminescence quenching could not be used to check charge transfer. Thus, two cases involving no changes in PIA spectrum have to be considered: (i) photoinduced electron transfer does occur, but back transfer is so rapid (≤ microsecond) that the separated charge cannot be detected; or (ii) photoinduced charge transfer does not occur owing to a faster competing process.

Since the estimated photoinduced electron-transfer time in the (MEH-PPV)/C₆₀ composite is about 10⁻¹² s [172], longer than is required for the formation of a soliton in a polymer with degenerate ground state (≤ 10⁻¹³ s) [132], photoexcitons will relax into soliton–antisoliton pairs in the donor polymer before electron transfer occurs. The lower energy of the soliton–antisoliton pair (relative to the initial photoexcited electron–hole pair) and the energy barrier for breaking the soliton–antisoliton pair into a pair of polarons prevent charge transfer. Thus, charge transfer does not occur in PHDK/C₆₀ composites because the stabilized-charge solitons form more quickly.

The experimental results clarify an important criterion for the design of donor–acceptor couples suitable for electron transfer and long-lived charge separation. As in the case of conjugated polymers with a degenerate ground state, the excited-state dynamics of the donor unit can quench electron
transfer. Because this effect is hard to validate by experiment and has no potential value for applications, scarcely any further reports have been published.

3.2. Fullerene-doped nonconjugated polymers

In nonconjugated systems strong direct interactions of C₆₀ with polymer as in the above conjugated system, cannot take place, but incorporation of C₆₀ in a nonconjugated system can also improve its properties, just as in blending suitable pairs of polymer to produce new polymeric materials. Using a fullerene-containing polymer as a blend component offers a simple means to impart its properties to other polymers.

Polotskaya et al. [173] investigated the behavior of polystyrene/fullerene compositions containing up to 3 wt% C₆₀. They found that the addition of fullerene to polystyrene (PS) leads to an increase of molecular packing density and thus influences the transport of small molecules through polymer film. Gas diffusion through films of PS/fullerene compositions is slower than through PS films, but gas separation capabilities are greater. Dielectric studies showed that the fullerene is distributed as clusters in a rigid polymer matrix prepared from a toluene solution of PS and fullerene. Heating in the absence of air to temperatures above the PS glass transition leads to increased relaxation time for the ν-transition in PS in compositions containing 1 wt% fullerene. This effect is caused by rather strong interaction of PS chains induced by fullerene molecules in the PS–fullerene complex. When the C₆₀ content is 1 wt%, the probability of interaction between C₆₀ molecules in the PS/C₆₀ system may be sufficient to cause physical linking of PS chains in the film. Substituted C₆₀ derivatives have been used to increase the miscibility of polystyrene and C₆₀ [174]. Experimental results confirmed that C₆₀ derivative molecules can be monomolecularly dispersed in a polystyrene matrix, up to a maximum content of 6.3 wt%. C₆₀-bearing polymers were dispersed in a blend film or a single-polymer film, either monomolecularly or in aggregates, depending on the chain length of the polymer moiety and the blend composition.

Adding the C₆₀ to polyethylene (PE) film [175] causes a notable increase in the microhardness of the film, depending on the concentration of fullerene particles in the film. In addition, a substantial hardening of the composites is obtained by annealing at high temperature (Tₐ = 130 °C) and long annealing time (tₐ = 10⁵ s). The hardening of the composites by annealing has been identified with the thickening of
the PE crystalline lamellae. Comparison of X-ray scattering data and the microhardness values upon annealing leads to the conclusion that C_{60} molecules phase separate from the polyethylene crystals. The temperature dependence represents the independent contribution of the PE matrix of the C_{60} aggregates to the hardness value. Because of the poor compatibility of PE with C_{60} [176,177], C_{60} readily forms large particles (30–50 mm) in PE from solution that tend to be concentrated on the surface of the PE composite. Substituted C_{60} derivatives have been used to improve the compatibility of C_{60} with PE. Benzylaminofullerene (C_{60}H_{4.7}(NHCH_2C_6H_5)_{4.7})/low-density polyethylene (BAF/LDPE) composites containing up to 10 wt% BAF have been prepared from solution. BAF is evenly distributed as small particles of 1–5 mm diameter in polyethylene. The BAF molecules do not aggregate even when PE is heated to melting. The dielectric permittivity and loss factor have been studied as functions of BAF loading and frequency. The composites have almost the same small dielectric loss as LDPE alone, partly owing to the volume increase after mixing. The introduction of BAF does not affect the crystal structure and the crystallinity of PE, indicating that BAF is in the amorphous region of PE. The composites show higher storage and loss moduli than LDPE; but higher BAF loading has an adverse effect on the modulus.

Zhang et al. [178] prepared PPO/PS–C_{60} blends. With increasing C_{60} content in PS–C_{60} and PS–C_{60} blend has a composition-dependent T_g, showing that all the blends are miscible. None of the blends show any sign of phase separation, even when heated to 300 °C. The formation of a miscible blend requires the presence of favorable intermolecular interaction between the two component polymers. For PPO/PS blends, Wellinghoff et al. [179] suggested that miscibility arises from van der Waals interactions between the phenyl groups of PPO and PS. They show that PS containing 13.6 wt% C_{60} is still miscible with PPO. It is possible that the ‘aromatic’ C_{60} may also interact with the phenylene rings of PPO.

Troitskii et al. [180] used thermogravimetry to study the inhibition of thermo-oxidative degradation of PMMA and PS in the presence of C_{60}. They found that the weight loss decreased dramatically in the presence of fullerenes (Fig. 8). They explored the correlation between the kinetics of the depropagation reaction of PMMA radicals R’ and their interaction with oxygen and showed that the retarding influence of oxygen on PMMA depropagation increases with increasing oxygen concentration and with decreasing degradation temperature. They suggested that in the thermo-oxidative degradation of PMMA at elevated temperatures, the inhibiting effect of C_{60} is due to its interaction with R’ and oxygen-containing radicals to form less active compounds. In the case of PS, the retarding influence of fullerene is mainly connected.
with its reaction with oxygen-containing radicals, but interaction of C₆₀ with R’ cannot be ruled out.

4. Polymers with carbon nanotubes

4.1. General aspects

As a new kind of quasi one-dimensional material, CNTs have stimulated much interest in the scientific world since they were discovered in 1991 [5]. Because of their intrinsic structural properties (e.g. large aspect ratio and chirality), CNTs exhibit remarkable properties that have made them one of the most celebrated novel materials in the world [181–187]. For example, large-scale aligned CNTs [188] could be used to make electron field emitters [189]. Various nano-electronic devices might be fabricated from CNTs [190]. CNTs are exceptionally stiff and strong materials along their length [191]. In general, CNTs are expected to show their unique effects in multidisciplinary fields and should assume important roles as novel nanomaterials in the 21st century.

With the advances in fabrication and purification of CNTs, these fantastic materials show potential in physics, materials science, and engineering. However, their poor solubility has hindered their chemical manipulation and their potential applications. It is apparent that chemical and physical modification of the surface of CNTs will be necessary to realize many of their potential applications.

Surface modification of CNTs may be realized either by covalent or noncovalent bonding (wrapping) of polymer molecules on the surface of CNTs [192–194].

4.2. Covalent modification of CNTs with polymers

Covalent modification of CNTs is an emerging area in research on CNTs-based materials. Currently, two main strategies are employed: direct sidewall modification of CNTs and modifications based on surface-bound carboxylic acids on CNTs. Modification of CNTs with small molecules has been reported extensively. Covalent macromolecular modification of CNTs has also made progress, but the modification is not easy and more work is needed.

In 2000, Riggs et al. [195] prepared polymer-modified CNTs soluble in both organic and aqueous solutions. The surface-bound carboxylic acid groups produced by acid treatment of CNTs were converted to acylchloride groups and then reacted with the linear copolymer poly-(propionyl-ethylamine)-co-ethylamine (PPEI-EI). In this way, the CNTs can be attached to the linear polymer, just like ‘fishing’. According to the scanning tunneling microscopy (STM) results of Czerw et al. [196], the solubilized tubes appear homogeneous, containing the repeat units of the hexagonal structure along the tube axis presenting a self-assembled pattern. They also report the polymer-bound solubilized nanotubes to be luminescent. The luminescence is dependent on the excitation wavelength and can cover the entire visible range with quantum yields up to 0.1. Using similar strategies, Czerw et al. also realized covalent functionalization of CNTs by other polymers, such as PVA-VA, PVK-PS, and PS [197,198]. The functionalization breaks up nanotube bundles, a step which is essential for solubility.

For various polymer functionalized CNTs, there is direct microscopy evidence for wrapping of the polymer around individual nanotubes. Their solubilization provides opportunities for solution NMR studies of the CNTs. Although no meaningful nanotube carbon signals could be detected in ¹³C solution NMR measurements of solubilized CNTs (including ¹³C-enriched samples), both ¹H and ¹³C NMR results provide valuable information on the functional groups in functionalized SWNT and MWNT samples in solution. Usually, the ¹H NMR signals of the attached moieties become very broad, which is believed to be associated with diamagnetic species of low mobility, the nanotube-attached moieties. The optical limiting of the PPEI-EI-CNTs was measured in a chloroform solution using nanosecond laser pulses at 532 nm [199]. The relatively weaker optical limiting effect suggests a different optical limiting mechanism from the nonlinear scattering mechanism for CNT suspensions [200].

The featureless absorption of PVK–SWNT is an indication of successful functionalization of SWNTs, in which the introduction of sp³-hybridized carbon atoms disrupts the extended π-network of the bare sp²-hybridized nanotubes (Fig. 9). The Raman spectrum of pristine SWNTs displays an intense
peak at 1595 cm\(^{-1}\), attributable to the \(E_g\) tangential mode, with a small disorder-induced peak at 1280 cm\(^{-1}\) (D line). There is also a clear characteristic peak in the radial breathing mode (RBM) spectral region. The corresponding Raman spectrum of PVK–SWNT displays an intense peak at 1595 cm\(^{-1}\) together with other peaks derived from PVK. Compared with that of pristine SWNT, the intensity of the D line of PVK–SWNT at 1280 cm\(^{-1}\) is obviously increased (Fig. 10). This is an expected result of introduction of covalently bound moieties on the CNT framework, wherein some of the sp\(^2\) carbons have been converted to sp\(^3\) by hybridization \[201\]. Meanwhile, the existence of the RBM Raman line of the PVK–SWNT sample in the low-frequency range strongly suggests that the tubular structures of the sample are retained. Surprisingly, there is evidence of photo-induced electron transfer from PVK to SWNTs, which was detected by LESR. There are no ESR signals for both pure PVK and PB samples either with or without UV illumination. The ESR spectrum of pristine SWNTs shows only a very strong ferromagnetic resonance signal that is not affected by illumination. However, the ESR spectrum of PB-SWNT displays a strong, symmetric signal at \(g \approx 2.003\) (where \(g\) is the electron \(g\)-factor) with peak-to-peak linewidth \(\Delta H_{pp} \approx 2.7 G\). The \(g\)-value is similar to that of Haddon’s solubilized SWNTs \((g = 2.003 \pm 0.001)\) \[194\]. Under UV light illumination, no change in the signal was observed. The ESR spectrum of PVK–SWNT (Fig. 11), however, reveals a relatively wide unsymmetric line shape with \(g \approx 2.004\) and \(H_{pp} \approx 7.1 G\). When the sample was illuminated, two additional photoinduced spin signals were resolved at \(g \approx 1.997\) with \(\Delta H \approx 14 G\), and at \(g \approx 2.009\) with \(\Delta H \approx 20 G\), while the signal at \(g = 2.004\) did not change. As the ESR spectra of PB-SWNT and pristine PVK do not change under the same illumination, the two new signals in the ESR spectrum of PVK–SWNT must be due to photoinduced interaction between PVK and SWNT. The \(g\)-value of 2.009 is assigned to \((\text{PVK})^+\), and the other \(g\)-value of 1.997 can be assigned to the SWNT\(^-\). Thus the new spin signals under illumination indicate that there is photoinduced electron transfer from PVK to SWNTs.

Recently, Yao et al. \[202\], Qin et al. \[203\] and Kong et al. \[19\] reported grafting of polymer chains from the ends and sidewalls of SWNT or MWNT via ATRP. Yao et al. \[202\] attached phenol groups to single-walled CNTs using the 1,3-dipolar cycloaddition reaction, then derivatized the phenols with 2-bromoisoobutyryl bromide. These initiators were found to be active in the polymerization of methyl
methacrylate and tert-butyl acrylate from the surface of the nanotubes; but the polymerizations were not controlled, leading to production of high molecular weight polymers with relatively large polydispersities. Qin et al. [203] and Kong et al. [19] first introduced carboxylic acid groups on SWNT or MWNT by nitric acid oxidation and then covalently attached the ATRP initiator (2-hydroxyethyl-2-bromopropionate) to the SWNT or MWNT. Qin et al. added methyl 2-bromopropionate (MBP) as free initiator during the grafting to control growth of the graft chains and to monitor the polymerization kinetics. Experimental results show that the molecular weight of free poly(n-butyl methacrylate) (PBMA) increased linearly with BMA monomer conversion. PBMA cleaved from the SWNT after high conversion had the same molecular weight as PBMA produced in solution. Kong et al. not only prepared the homopolymer grafting chain from MWNT, but also prepared block copolymer grafting chain from MWNT. Through this modification, MWNT-PMMA-b-PHEMA can be well dispersed in a suitable solvent, forming a stable, clear, transparent systems. The best ‘solubility’ of MWNT-PMMA-b-PHEMA is around 0.8 mg/ml. The modification of CNTs with biomacromolecules is of great current interest because of potential uses, such as building blocks in complex nanostructures, or in very sensitive, reversible biosensors. Baker et al. [204] and Khitrov [205] recently made a covalent adduct of DNA to SWNTs. The carboxylic acid groups on the surface of the nanotubes were converted to amide functionalities which were then treated with the cross-linker succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) to produce maleimide functionalized nanotubes. In the final step, the maleimide groups were covalently attached to DNA (Scheme 43). The assemblies were detected by labeling the DNA with a fluorescein dye group and measuring its photoluminescence, or by linking unlabeled DNA to the tubes and then hybridizing the DNA-SWNT adducts with dye labeled DNA. They demonstrate that despite being strongly bound to a SWNT, the DNA retains all the chemical properties of a free molecule. Thus, the covalent attachment would still allow the utilization of the DNA-SWNT adduct in very selective binding assays or the construction of complex nanostructures, and would result in systems with improved stability.

Williams et al. [206] unite SWNTs with the specific molecular-recognition features of DNA by coupling SWNTs to peptide nucleic acid (PNA, an uncharged DNA analog). The SWNTs with carboxylic acid groups on the surface were dispersed in DMF and incubated in 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysuccinimide (NHS) to form SWNT-bearing NHS esters. PNA adducts were formed by reacting this material in DMF for 1 h with excess PNA (sequence: NH2-Glu-GTGCTCATGGTG-CONH2, where Glu is a glutamate residue and the central block represents...
nucleic-acid bases). AFM confirmed that fragments of double-stranded DNA were hybridized to the PNA-SWNT (Scheme 44). This method may provide a new, versatile means of incorporating SWNTs into larger electronic devices by recognition-based assembly, and of using SWNTs as probes in biological systems by sequence-specific attachment.

Huang et al. [207] functionalized CNTs with bovine serum albumin (BSA) via diimide-activated amidation under ambient conditions. The nanotube-BSA conjugates thus obtained are highly water-soluble, and nearly all the protein in the nanotube-BSA conjugates remains bioactive. Dwyer et al. [208] also proved that CNTs with surface-bound carboxylic acid groups can be functionalized with amino-terminated DNA strands.

4.3. Noncovalent modification of CNTs with polymers (polymer wrapping)

Like the fullerene-doped conducting polymer systems we discussed in Section 3, the CNT-doped conducting polymer systems also exhibit effective and noneffective doping in the ground state. Effective doping can improve the miscibility of CNTs with conducting polymers.

The sp² bonded graphene structures at the sidewalls of CNTs contain highly delocalized π electrons which can form functionalized CNTs with other π electron-rich compounds through π–π interaction. This organic functionalization method does not destroy the intrinsic structures of CNTs and gives structurally intact CNTs with functionalities. Recently, the potential interaction between the highly delocalized π-electrons of CNTs and the π-electrons correlated with the lattice of the polymer skeleton has generated much interest and provided the motivation for studying the optical and electronic properties of composites of CNTs and π-conjugated polymers.

An international group of investigators [209–215] doped CNTs into poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylene vinylene) (PmPV) (Scheme 65), a conjugated luminescent polymer, and obtained a CNT-PmPV composite formed through π–π interaction. They found that the solution of the semiconjugated organic polymer was capable of suspending nanotubes indefinitely, while the accompanying amorphous graphite settled out. This method can be used to purify CNTs effectively and non-destructively [210–212]. A fairly strong interaction between SWNTs and PmPV was further demonstrated [209] by transmission electron microscopy and STM. The spectroscopic behavior of the composite was dramatically affected by CNT doping (effective doping in the ground state) [209]. Moreover, after doping by a small amount of MWNTs, the electrical conductivity of the polymer is increased by up to eight orders of magnitude. Composite light-emitting diodes

![Scheme 44. PNA modified SWNTs](image)
(LEDs) fabricated from such solution show lifetimes up to five times longer than LEDs without MWNTs in air. The authors suggested that the MWNTs act as heat sinks in the polymer matrix dissipating the heat generated in the PmPV during operation [213]. Star et al. [216] also prepared a composite material based on PmPV wrapped SWNTs. They also confirmed the strong interaction of PmPV with SWNTs. They found that the surface coverage becomes highly uniform and the average diameter of the SWNT bundles decreases as the polymer concentration is increased.

Ago et al. [217,218] studied the electronic interaction between photoexcited poly(p-phenylene vinylene) (PPV) and MWNTs using absorption, photoluminescence (PL) and PIA spectroscopy. They found that the MWNTs interact strongly with the photoexcited PPV, while there is no significant interaction in the ground state (noneffective doping in the ground state). There was a slight blue-shift (40 meV) of the strongest PPV peak in the absorption spectrum of the composite. This blue-shift signifies that the effective π-conjugation length of PPV is shortened in the composite, because the local nanoscopic structure of PPV modified by MWNTs leads to more intrachain disorder. However, apart from the small change of the peak position, there was no significant change in the absorption spectrum of the composite, indicating the absence of electronic interaction in the ground state of PPV and MWNTs. In addition, the PL and PIA quenching in the PPV–MWNT composite is regarded as a consequence of electronic interaction between PPV and MWNTs, and the main electronic interaction is energy transfer from photoexcited PPV to the MWNTs. It is believed that the high efficiency arises from a complex interpenetrating network of PPV chains with MWNTs and the relatively high work function of the MWNT film. The present results suggest the possible application of CNTs as a new interesting electrode material in macroscale devices.

Star et al. [216] demonstrated that PmPV and nanotube components of a wrapped structure are in intimate electrical contact. They considered that this probably results from the helical conformation of PmPV, which aids in overcoming steric barriers to wrapping. This nanotubes/polymer composite behaves like a photoamplifier, producing a current of a thousand and more electrons for each photon the polymer absorbs. In the meantime, the electrical properties of SWNTs are largely unperturbed by the associated polymer. In addition, Steuerman et al. [219] investigated the composite of SWNTs and poly{[(2,6-pyridinylene-vinylene)-co-(2,5-dioctyloxy-p-phenylene)vinylene]} (PPyPV) (Scheme 45), which can also promote solubilization of SWNTs in chloroform. The fundamental difference between PPyPV and PmPV is that the former is a base and is readily protonated by addition of HCl. Steuerman et al. found that the SWNT/PPyPV interaction lowers the pK_a of PPyPV. For PmPV-wrapped tubes, the wavelength dependence of this effect correlates with the absorption spectrum of PmPV. For PPyPV, the wavelength dependence correlates with the
absorption spectrum of protonated PPyPV, indicating that SWNTs assist in charge stabilization.

In situ polymerization of a conducting polymer in the presence of nanotubes is also a good method to improve the miscibility of CNTs and conducting polymer. Tang et al. [220] prepared MWNTs-containing poly(phenylacetylene) (PPAs) by in situ catalytic polymerization of phenylacetylene in the presence of nanotubes. They found that the nanotubes in CNT/PPAs were helically wrapped with PPA chains. Short nanotubes thickly wrapped with PPA chains are soluble in common organic solvents including THF, toluene, chloroform, and 1,4-dioxane. Shearing of the CNT/PPA solutions readily aligns the nanotubes along the direction of the applied mechanical force. The nanotubes exhibit a strong photostabilization effect, protecting the PPA chains from photodegradation under intense laser irradiation with incident fluence as high as 10 J/cm². This CNT/PPA nanocomposite also shows good optical limiting properties. Fan et al. [221, 222] obtained a new type of polymer-wrapped CNTs by in situ polymerization of conducting poly(phenylacetylene) (PPY) on MWNTs. Cochet et al. [223] reported the synthesis of MWNT composite with polyaniline (PANI). They found that in situ polymerization led to effective site-selective interactions between the quinoid ring of PANI and the MWNTs, facilitating charge transfer between the two components. This confirmed the formation of an overall material, which is more conducting than the starting components. Zengin et al. [224] also reported the preparation of PANI/MWNT composite by in situ methods. They found that the composite to exhibit an order magnitude increase in electrical conductivity over neat PANI, and found that the MWNTs were well dispersed and isolated.

O’Connell et al. [225] found SWNTs could be solubilized in water by noncovalently associating them with linear polymers, most successfully with polyvinyl pyrrolidone (PVP) and polystyrene sulfonate (PSS) (Scheme 45). They proposed a general thermodynamic interpretation, wherein the polymer drove the wrapping by disrupting both the hydrophobic interface with water and the smooth tube–tube interactions in the aggregates. The nanotubes could be unwrapped by changing the solvent system. This solubilization process opens the door to solution chemistry on pristine nanotubes, as well as their introduction into biologically relevant systems.

In addition to the CNT doped conducting polymer composites, many papers have been concerned with CNT doped nonconducting polymer systems. Because of their good elasticity and extremely high Young’s modulus [9,10], as well as their high aspect ratios, CNTs are expected to find uses as effective reinforcing additives in composite materials. Many studies carried out on CNT/polymer composites [12, 226–230] show that three main factors greatly influence the reinforcement of the CNT/polymer composites: (1) good dispersion of the CNTs in the polymer matrix [12,226–228], (2) strong interfacial bonding between CNTs and polymer [228–230], and (3) good alignment of the CNTs in the polymer matrix [213,231–233]. Because of the weak interaction between polymer matrix and CNTs and the strong van der Waals forces between CNTs, CNTs tend to agglomerate in composites and the composite strength may not be effectively enhanced by CNTs. It has been suggested that sufficient dispersion is one of the key factors needed to realize nano-reinforcement of the composite. Various approaches have been taken to improve the dispersion of MWNTs in a polymer matrix: Gong et al. [226] used nonionic surfactants to aid the dispersion of CNTs in epoxy, which resulted higher T_g and elastic modulus; Jin et al. [227] used PVDF to assist the melt-blending of MWNTs in PMMA, which led to a significant improvement in the storage modulus of the MWNT/PMMA composite at low temperatures.

Recently, chemical functionalization of CNTs has been realized, and high solubility of CNTs in some solvents can be achieved [187,193,234]. This is very important for application of CNTs as additives for reinforcement of polymer materials because the functionalization of CNTs not only simplifies the fabrication process of CNT/polymer composites, but also improves the interfacial bonding between the polymer matrix and the CNT. Preliminary results are encouraging but further studies are needed.

5. Applications

5.1. Photoconductivity

The photoconductivity of a conducting polymer can be markedly enhanced by doping with C_60. C_60
Doped polymers that have been studied include PVK [151], PMPS [158], and OO-PPV [11]. The performance of these materials is comparable with some of the best photoconductors available, such as thiapyrylium dye aggregates [235]. Interestingly, PMPS shows no detectable surface discharge upon illumination under tungsten lamp light because of its low charge-generation efficiency. When 1.6 mol% C$_{60}$ was doped into PMPS, the photoinduced discharge rate increased several orders of magnitude. Similar results were obtained when the samples were irradiated with monochromatic irradiation at 340 nm. Fig. 12 shows that C$_{60}$-doped PMPS film has low dark conductivity, and the photo-induced discharge is fast and complete. These properties are very important for electron-photographic applications. C$_{60}$-doped PMPS and polycarbonate film doped with thiapyrylium dye, one of the best commercial photoconductors, have comparable photo-induced discharge responses over a 40-fold change in tungsten light intensity.

In 1999, Gu et al. [236] synthesized fullerenated polymethylphenylsilane (C$_{60}$-PMPS) by two methods: (1) synthesis of PMPS via a Wurtz type reduced coupling reaction followed by a Friedel–Crafts reaction with C$_{60}$; (2) by direct copolymerization of dichloromethylphenylsilane with C$_{60}$. They found that the C$_{60}$ moieties were bonded to the pendant benzene ring of PMPS by the Friedel–Crafts reaction and incorporated into the main chain by direct copolymerization. The C$_{60}$-PMPS copolymers prepared by direct copolymerization have very good photoconductivity in contrast with pure PMPS and Friedel–Crafts C$_{60}$-PMPS, which show hardly any photoconductivity.

In the PVK/C$_{60}$ system [237–240], charge-generation might be due either to excitation of fullerene (followed by electron hopping from carbazole to fullerene) or to direct excitation of the fullerene/carbazole CT complex. Because the absorption spectrum of the C$_{60}$/carbazole CT complex differs from that of pure C$_{60}$ by a broadened absorption in the 500 nm region, it is very difficult to distinguish the two possibilities from the spectra alone. We studied these spectra and proved the existence of fullerene/carbazole CT complexes by several methods. Incorporation of C$_{60}$ into the PVK chain by covalent bonds improves the miscibility of C$_{60}$ and PVK, and the photoconductivity is greatly enhanced [237]. N-vinylcarbazole copolymers with different C$_{60}$ contents were synthesized in lithium naphthalene-initiated anionic polymerization reactions by Chen [238]. 13C NMR provided strong evidence for the covalent attachment of PVK units to the C$_{60}$ core. This system has very good photoconductivity. Using a very simple method, we [239] prepared C$_{60}$ grafted PVK and found that the photoconductivity of PVK is enhanced greatly by grafted C$_{60}$. The decay half time $t_{1/2}$ of the light is only 0.35 s, and film forming properties are also improved. To increase the miscibility of C$_{60}$ with polymer, some soluble chains, such as 2-(1',1',2',2'-tetracyanomethanoxymethano) fullerene have to be bonded to C$_{60}$ [240]. Doping this compound into PVK, Long et al. [240] found much higher photoconductivity than could be obtained by doping with pure C$_{60}$.

The photoconductivity of the OO-PPV/C$_{60}$ system has also been studied in detail [11]. The photoconductivity is strongly enhanced by introduction of a small amount of C$_{60}$. However, the photoconductivity tends to saturate at C$_{60}$ concentrations exceeding 5 mol%. Similar enhancement of photoconductivity by doping PMPS with C$_{60}$ was also reported [158]. This enhancement can be interpreted in terms of photoinduced charge transfer, and is observed when the top of the valence band of the conducting polymer is at lower energy than the LUMO of C$_{60}$. Yoshino et al. [11] gave the energy diagram of OO-PPV/C$_{60}$ (Fig. 13), and proposed that electron transfer from
OO-PPV to C$_{60}$ is difficult in the ground state. Upon irradiation of light with photon energy exceeding the band gap energy (2.2 eV) of OO-PPV, the interband optical transition will create excitons or exciton-polarons (Ex-P) in OO-PPV. The migration from the Ex-P to the vicinity of neutral C$_{60}$ is an autoionization process (Fig. 14), since electron tunneling from the Ex-P level to t_{1g} or t_{1u} states of C$_{60}$ is favored. The probability of this tunneling (or photon-assisted hopping) is determined by the overlapping of p orbitals of OO-PPV and C$_{60}$ and the extent of Ex-P. Electrons transferred to C$_{60}$ by this photoinduced charge-transfer process relax to immobile negative polarons C$_{60}^{-}$, but holes in OO-PPV relax to mobile positive polarons P$^{+}$, resulting in the enhancement of photoconductivity. This enhancement is observed over a C$_{60}$ concentration range from 1 or 2 mol% to saturation. This can be explained as follows: for enhancement of photocarrier generation, the photoexcited Ex-P must encounter a C$_{60}$ molecule during its lifetime. There is one C$_{60}$ molecule per 50–100 monomer units of OO-PPV at a concentration of 1–2 mol% of C$_{60}$. Hence, the enhancement of photoconductivity mainly occurs in the concentration range below 1–2 mol%, suggesting that Ex-P migrates along about 50–100 monomer units during its lifetime. At higher concentrations of C$_{60}$ to saturation, the Ex-P will encounter C$_{60}$ more frequently and the lifetime of mobile positive polarons P$^{+}$ may become shorter. Thus no further enhancement of photoconductivity will occur.

Interestingly, we found that C$_{60}$ can enhance the photoconductivity of nonconducting as well as conducting polymers. A series of C$_{60}$-MMA copolymers synthesized by free radical polymerization [241] showed obvious photoconductivity. In order to obtain unambiguously structured nonconducting polymeric C$_{60}$ derivatives, we prepared two kinds of side-chain polymeric C$_{60}$ derivatives [242]. In one type, C$_{60}$-containing polystyrene resins with C$_{60}$ in the side-chains at mass fractions about 2.9, 6.7 and 11%, photoconductivity increases markedly with increasing C$_{60}$ content. Another system is C$_{60}$-containing styrene-acrylamide (St-Am) copolymer [243], in which the maximal C$_{60}$ content in the copolymer is 1.45 wt.%. Experimental results indicate that these polymers with 1.45% C$_{60}$ have good photoconductivity; $t_{1/2}$ of the best one is about 1.88 s. The photoconductivity can be enhanced by increasing the C$_{60}$ content. We also studied the photoconductivity of a PVK/MWNTs blend [244]. A PVK/MDDA (didecylamine modified MWNT) blend showed good photocconductivity. However, the PVK/MWNT blend...
exhibited little photoconductivity (Fig. 15). Fluorescence studies indicated that MDDA can act as an electron acceptor in either the ground or excited state, while PVK serves as an electron donor. As solubilized CNTs can improve the mobility and the dispersibility of CNTs, the solubilized CNTs may be used to improve the interaction with certain polymers in CNT/polymer composites.

It can be predicted that, with further study, polymer composites with C₆₀ or CNT will be developed into practical photoconductive materials. In the near future, these materials should find uses in photoelectric, electrophotographic, and other devices.

5.2. Photorefractivity

The potential application of photorefractive (PR) materials is in data storage devices. The photorefractive effect has been observed in a variety of inorganic crystals, such as LiNbO₃, KNbO₃ and LiTaO₃. Organic and polymeric materials are potential candidates for nonlinear optical (NLO) applications because of their NLO properties, high optical damage threshold, and easy processability [245]. The requirements for the photorefractive effect can be fulfilled simultaneously in an organic composite containing both photoconductive and electro-optic components. Polymers doped with C₆₀ have been studied extensively in last decade. Zhang et al. [246] reported the observation of photorefractivity in a charge transport polymer system, i.e. PVK doped with fullerene and a second-order NLO molecule, diethyl-amino-nitrostyrene (DEANST) (with a first hyper-polarizability of \(\beta = 2.2 \times 10^{-20} \) esu). Study of the electric-field dependence of the photocharge, generation quantum efficiency, and four-wave mixing diffraction efficiency showed that this system fulfills the three necessary characteristics for a photorefractive material (absorption, photoconduction, and electron-optic activity). Degenerate four-wave mixing demonstrated the existence of the photorefractive effect, and a maximum diffraction efficiency of \(2 \times 10^{-5} \) was obtained. PVK doped with a liquid crystal, 4-butyloxy-4'-cyanobiphenyl, and C₆₀ was studied by a two-beam coupling experiment [247]. The results showed that the photorefractivity is enhanced by phase separation. A hybrid photorefractive liquid-crystal cell was prepared with PVK as a photoconduction layer [248]. The hybrid structure increased the diffraction efficiency and transmittance by eliminating light loss by undesirable scattering of the incident beam through the liquid-crystal cell. The use of a photoalignment layer in the hybrid liquid-crystal structure resulted in a gain coefficient over 900 cm⁻¹, diffraction efficiency over 13%, and transmittance over 85%. These results indicate that the hybrid cell design can provide high efficiency for many applications in real-time holography and data storage devices.

Acrylate-type copolymers (TPA-DCV) consisting of a triphenylamine (TPA) unit as a hole transport agent and dicyanovinyl aniline (DCV) as a second-order NLO chromophore on a side chain were synthesized by Park et al. [249]. The polymers showed good solubility and sufficient morphological stability after film formation. The diffraction efficiency and gain coefficient increased as the glass transition temperature decreased. TPA-DCV composite doped with fullerene (C₆₀) and dibutyl phthalate had a high photoconductivity of \(5.1 \times 10^{-12} \) S/cm at an applied electric field of 50 V/µm. Diffraction efficiency and response rate were measured as functions of the parameters determining the photoconductivity (e.g. applied electric field, the density of the photocharges generated, and writing beam intensity). The maximum diffraction efficiency, gain coefficient, and maximum response time were
12.9%, 64 cm$^{-1}$, and 700 ms, respectively, at an applied electric field of 80 V/μm. Photoconductivity, response rate, and diffraction efficiency increased with increasing applied field. The field dependence of the response rate is attributed to the charge generation efficiency and/or the drift mobility. A similar power dependence of photoconductivity and response rate on the writing beam intensity was observed. The response rate and diffraction efficiency showed a good linear relationships with the logarithm of the photocactivity.

Ono and Kawatsuki [250,251] observed high-performance photorefractivity in the thick-grating regime for high-molar-mass liquid crystal (H-LC) and low-molar-mass liquid crystal (L-LC) mixtures (HL-LCMs) doped with C$_{60}$. The photorefractive performance strongly depended on the concentration ratio of H-LC and L-LC. A high net gain coefficient over 600 cm$^{-1}$K$^{-1}$ was achieved with low applied DC fields (0.7 V/μm) and a fringe spacing of 2.8 mm. The gain coefficients and the resolution increased with increasing concentration of H-LC. The photorefractive grating formation time was varied between 0.12 and 3.5 s, depending on the concentration of H-LCs. In view of the above findings, we anticipate that C$_{60}$ doped conducting polymer or LC systems have high potential for applications to real-time holography and data storage devices. Development of better preparative methods can be expected to lead to major improvements in photorefractivity.

5.3. Photovoltaic cells and photodiodes

Photoinduced electron transfer between semiconducting conjugated polymers and fullerenes has recently attracted considerable scientific and technological attention. ‘Bulk heterojunction’ polymer photovoltaic devices and photodiodes have been constructed with composite films of semiconducting polymer as electron donors and fullerene derivatives as electron acceptors [252,253]. The primary step in these polymer photovoltaic devices is an ultrafast photoinduced electron transfer reaction at the donor–acceptor interface, which results in a metastable charge-separated state. The quantum efficiency of this step is assumed to be close to unity [254,255]. However, the overall conversion efficiency of these devices is limited by the carrier collection efficiency, which is greatly influenced by the morphology of the active film [253,256]. In order to achieve better performance of fullerene-based photovoltaic devices, novel types of ‘double-cable’ polymer photovoltaic devices and photodiodes have been constructed very recently in which the p-type conjugated backbones (donor-cable) bear directly grafted or tethered fullerene moieties (acceptor-cable). In this way, the effective donor/acceptor interfacial area is maximized, while phase separation and clustering phenomena should be prevented. In addition, the interaction between the donor conjugated backbone and the acceptor moieties may be tuned by varying the chemical structure (nature and length) of their connecting fragment [257].

In 2001, Rarcos et al. [42,258] reported the preparation of a solar cell based on a novel double-cable polymer (Scheme 12). Compared with the corresponding pristine polymer, the photoluminescence of C$_{60}$ linked polymers in toluene solution was quenched by two orders of magnitude. Photoluminescence quenching was also observed in thin solid films. The quenching mechanism is believed to be photoinduced electron transfer. Accordingly, the photoinduced Vis–NIR absorption spectrum of the C$_{60}$ linked polymers in the solid state exhibits the band typical of methanofullerene radical-anions at about 1.2 eV accompanied by two broad bands, at 0.62 and 1.53 eV, characteristic of positive polarons on a conjugated chain. The lifetime of the photogenerated charges in the C$_{60}$ linked polymers extends to the millisecond time domain.

Photovoltaic devices based on the C$_{60}$ linked polymers were fabricated by spin-coating [42]. Current vs. voltage (I/V) curves recorded in the dark and under white-light illumination (100 mW cm$^{-2}$) revealed a J_{SC} value of 0.42 mA cm$^{-2}$, V_{OC} = 830 mV, and FF = 0.29. The IPCE showed an onset at 550 nm and a maximum of 6% at 480 nm. It is worthy of note that the performance of this first example of double-cable based solar cells, which were not optimized, is already competitive with that of devices prepared following the p/n-heterojunction as well as the ‘bulk-heterojunction’ approaches [252,253,259]. Moreover, this performance is given by a double-cable with a fullerene loading of 31.5 wt%, a value considerably smaller than that commonly used in ‘bulk-heterojunction’ solar cells (about 75 wt%).
Zhang et al. [41] reported another interesting family of soluble double-cable copolythiophenes carrying fulleropyrrolidine moieties (Scheme 11). Copolymers contained 7 mol% fullerene monomer (corresponding to 14.5 wt% n:m = 93:7) and 14 mol% (corresponding to 24.2 wt%, n:m = 43:7) of fullerene monomer, respectively. Both copolymers exhibited a color change from orange to blue upon exposure to chloroform vapor at room temperature. In this blue-phase, both copolymers displayed a broad electronic absorption band covering a wide range of the solar spectrum, which is in itself an interesting property for PV materials. The solubility of a and b allowed the fabrication of photodiodes. The devices based on b, the more highly fullerene-loaded double-cable, showed an IPCE more than twofold higher than that of devices prepared with a. A significant improvement of the IPCE was obtained in both cases after treating the photoactive films with chloroform just before evaporation of the Al electrode. This effect reflects the change in the absorption spectra while going from the orange to the blue phase of the copolymers. Devices prepared using b where characterized under monochromatic light (λ = 505 nm) illumination with an intensity of 0.1 mW cm⁻². The FF was 0.25 and the power conversion efficiency was 0.6%. The diodes not treated with chloroform gave the highest photovoltages, VOC = 750 mV. This value is higher than that reported for PEOPT/C₆₀ ‘bulk-heterojunction’ solar cells [246]. After treatment with chloroform vapor, the VOC of the device dropped to 450 mV. This behavior is a consequence of the altered energy levels between the orange and the blue phases [260].

Nava et al. [261] prepared fullerene-containing polyesters by polycondensation of bifunctional fullerene adducts with tetraethylene glycol or polyethylene glycol (Scheme 46a and b). These polymers show both good solubility in common organic solvents and good film-forming properties. One of the compounds was fabricated into solar cells together with MDMO-PPV (Scheme 46). Although the cell performance was poor, probably due to the presence of the large solubilizing groups attached to the fullerene monomer, Nava et al. believe that device performances could be improved by optimizing the processing of the fullerene-functionalized polymer/MDMO-PPV active layer.

Oligo(p-phenylenevinylene)-fullerene dyads were prepared by several research groups in order to avoid the incompatibility and macrophase separation problem of regular fullerene-based photovoltaic devices [98,262–266]. For example, Eckert et al. [262,263] synthesized fullerene-OPV hybrids (a) and (b) in Scheme 47 through 1,3-dipolar cycloaddition of azomethine ylides to C₆₀. Photovoltaic devices incorporating these hybrids produced a photocurrent, showing that photoinduced electron transfer takes place. However, the efficiency of the devices is limited by the fact that photoinduced electron transfer from the OPV moiety to the C₆₀ sphere must compete with an efficient energy transfer.

Janssen et al. [255] synthesized a homologous series of oligo(p-phenylene vinylene)-

![Scheme 46. C₆₀-containing polyesters and MDMO-PPV [261].](image-url)
fulleropyrrolidines (Scheme 48). The photophysical properties of these donor–acceptor dyads and the corresponding model compounds and N-methylfulleropyrrolidine were studied as a function of the conjugation length in solvents of different polarity and as thin films. Fast singlet energy transfer occurred in an apolar solvent after photoexcitation of the oligo(p-phenylene vinylene) (OPV) adjacent to the fullerene. Photoexcitation of the dyads in a polar solvent resulted in electron transfer in \(c \) and \(d \) and to some extent in \(b \), but not for \(a \). In thin solid films of \(c \) and \(d \), a long-lived charge-separated state is was formed after photoexcitation. The long lifetime in the film was attributed to the migration of charges to different molecules. A flexible photovoltaic device was prepared from \(d \), indicating that the donor–acceptor dyads form a bicontinuous donor–acceptor network. This may be an important clue for design of more efficient molecular bulk heterojunction materials.

Beside the applications in photovoltaic devices and photodiodes, polymer-modified fullerenes can also be used to fabricate organic light-emitting devices. Wang et al. [267] fabricated a multilayer organic light-emitting device by mixing together a \(\text{C}_{60} \)-based poly(phenylene vinylene) dyad and an emissive conjugated polymer POMPV (Scheme 49). Their primary study showed that the PPV-\(\text{C}_{60} \) dyad can improve the light-emitting performance. For example, the maximum luminance of the device is higher than that of the pure-POMPV device. The mechanism of the enhancement is under investigation. Using this composite [209,210], Wang et al. also fabricated photovoltaic devices and obtained quantum efficiency of 1.8% at 2.9–3.2 eV, about twice that of the standard ITO device.

5.4. Optical limiting

Owing to their unique molecular symmetry with \(\pi \) electrons highly delocalized over nearly spherical surfaces, fullerenes, especially \(\text{C}_{60} \), possess exhibit
highly NLO properties [13]. One of the most attractive NLO properties of fullerenes is optical limiting [268–272]. Optical limiting occurs when the optical transmission of a material decreases with increasing laser fluence [268], a property that is desirable for protection of sensors and human eyes from intense laser radiation. For laser radiation at 532 nm, C_{60} and its derivatives are among the best materials showing optical limiting properties. The mechanism of optical limiting of C_{60} and its derivatives is believed to be reverse saturable absorption (RSA), which occurs when excited states formed through optical pumping of the ground state have a higher absorption cross-section than the ground state [268–271].

For practical application, it is necessary to make solid-state optical limiting devices. In this context, C_{60}-doped polymer matrices has been investigated [153,272,273]. However, as C_{60} itself is hardly processible into a solid optical material, owing to its very low solubility in most organic solvents, preparation of fullerene derivatives with better solubility, but maintaining the NLO properties of C_{60}, are obviously crucial to obtaining better optical limiting devices. One strategy is functionalization of C_{60} with solubilized polymers.

The first optical limiting study of polymer-bound C_{60} was reported by Kojima et al. in 1995 [274]. The polystyrene-bound C_{60} was prepared by high-pressure polymerization of styrene in the presence of C_{60}. The optical limiting of a circular disk made from the resulting C_{60}-bound polymer was measured by using a frequency-doubled Nd:YAG laser with an 8 ns pulse width. The limiting was about five times greater than that of a C_{60} styrene solution.

Sun et al. [275] prepared linear polystyrene-bound C_{60} (Scheme 50) in which the fullerene cages are covalently attached to polystyrene chains, in primarily pendant linkages, by a Friedel–Crafts type reaction using AlCl_3 catalyst. These soluble pendant C_{60}–PS polymers have better defined structures than the copolymers reported by Kojima et al. The optical limiting behavior of the polymer is attributed to the nonlinear absorptions of the pendant C_{60}, which follow the RSA mechanism. Although the optical limiting of the polystyrene-bound C_{60} at 532 nm (Nd:YAG laser) is not as good as that of pristine C_{60} in solution, this polymer can be fabricated into supported or free-standing films of high optical quality. Since C_{60} cages are polymer-bound, their dispersion in the films should be homogeneous. Such polymer films may well play a significant role in the development of optical limiting devices.

Lu et al. [276] synthesized copolymers of benzylaminofullerene (C_{60}H_2(NHCH_2C_6H_5)_2) with methyl methacrylate or ethyl methacrylate by free-radical

Scheme 49. C_{60}-based poly(phenylene vinylene) dyad and POMPV [267].

Scheme 50. Polystyrene-bound C_{60} [275].
copolymers have relatively good solubility in THF. Although benzylaminofullerene homopolymer shows good optical limiting performance comparable to that of C$_{60}$, the optical limiting of all of the copolymers is much weaker.

Tang et al. synthesized a series of copolymers of C$_{60}$ with phenylacetylene (PA), with 1-phenyl-1-propyne (PP), and with 1-phenyl-1-butyne (PB), initiated by catalysts such as MoCl$_5$Ph$_4$Sn, and WCl$_6$-Ph$_4$Sn, etc. [92,277]. The resulting copolymers are soluble, stable, and film-forming. They contain up to 9.1 wt% C$_{60}$ cages. The authors claim that the C$_{60}$ cages are incorporated into the polymer structures through cyclopropanation reactions resulting in methanofullerene structures. For the PP modified C$_{60}$, only one, or at most two, poly-PP chains are bound to one C$_{60}$ cage on average. However, for the PB modified C$_{60}$, usually more than two poly-PB chains are bound to one C$_{60}$, resulting in multiple addition patterns of the C$_{60}$ cage. The authors’ optical limiting investigation shows that at 532 nm (Nd:YAG laser) the poly-PP bound C$_{60}$ exhibits much better optical limiting performance than C$_{60}$ in solution at a linear transmission of 43%. Under the same experimental conditions, the multiple poly-PB chains bound C$_{60}$ is also a better optical limiter than C$_{60}$. This is not consistent with other results from other research groups showing that that C$_{60}$ derivatives with multiple addition patterns show much weaker optical limiting responses compared with the corresponding mono-addition C$_{60}$ derivative as well as pristine C$_{60}$. This behavior is probably due to the high degree of functionalization of the fullerene cage as well as the involvement of optical limiting mechanisms other than RSA [278,279].

The optical limiting behavior of star polymer of polystyrene-modified C$_{60}$ (C$_{60}$-(PS)x)y was studied by Venturini et al. [280]. In their experiments, two, four and six polystyrene arms of controllable length were grafted directly on the C$_{60}$ cage in order to prevent aggregation of C$_{60}$ cages and consequently to permit achievement of high C$_{60}$ concentrations (equivalent to a solution of up to 37 mM). The optical limiting behavior of thin films made from pure PS–C$_{60}$ or mixtures of PS–C$_{60}$ and PS at various concentrations was measured below the damage threshold using nanosecond 532 nm laser radiation. It is clear that the two-arm C$_{60}$(PS)$_2$ entity, which exhibits recognizable residual bands of the C$_{60}$ absorption spectrum, has a better optical limiting performance than structures having 4 or 6 PS arms. Venturini et al. suggested that polystyrene is not the best matrix since the damage threshold is rapidly reached. Further work has to be carried out to improve the optical limiting properties of such promising macromolecules up to the optical quality level required for practical NLO device applications.

Recently, fullerodendrimers were also studied for their optical limiting properties. Rio et al. [71] attached poly(aryl ether) dendritic branches terminated with peripheral triethyleneglycol chains to C$_{60}$ cages to obtain a series of poly(aryl ether) modified fullerodendrimers. These fullerodendrimers (Scheme 21) were easily incorporated in mesoporous silica glasses and its optical limiting properties were measured by the frequency-doubled Nd:YAG laser emission at 532 nm. The pulse duration is about 30 ps, which is considerably shorter than the intersystem crossing time and the observed increase in absorption is dominated by the population of the excited singlet state. For all the compounds, transmission remains nearly constant for fluences lower than 3–10 mJ cm$^{-2}$. When the intensity increases above this threshold, the effect of induced absorption appears, and the transmission diminishes rapidly, thus showing the potential of these materials for optical limiting applications.

6. Conclusion and prospects for the future

With the development of fullerene organic chemistry, many low-molecular organic reactions can be used in polymeric modification of fullerene. By controlling the functional groups in polymers and reaction conditions, many well-defined fullerene polymers, such as side-chain fullerene polymers, main-chain fullerene polymers, dendritic fullerene polymers, star-shaped fullerene polymers, fullerene end-capped polymers, and so on, have been prepared. At the same time, many living polymerization methods have been introduced into the preparation of the polymer fullerenes. By anionic polymerization, well-defined six-arm star-shaped fullerene polymers can be obtained (the iniferter technique allows well-defined arms for the star fullerene polymer to be synthesized).
fullerene polymers with well-controlled polymer chain length can be prepared. Thus it is now possible to control the architecture of fullerene polymers precisely by methods that constitute a good platform for the practical applications of fullerene derivatives.

Covalent bonding of polymer chains to CNTs is a new field. The section on polymeric CNTs in this review shows that polymeric modification of CNTs is in its beginnings, but is destined to play an important role in research and development on CNT-based materials. The combination of the unique properties of CNTs with various functional polymers offers many opportunities for research in chemistry, physics, and materials science, that will produce novel materials with unusual electrical, magnetic, and optical properties.

Doping fullerene into polymer systems has found more and more uses in preparation of electronic and optical materials. Many conducting polymers doped with C_{60} and its derivatives have been studied. Among them, three interaction modes can be distinguished. (i) There are interactions between the ground-state wave functions of the polymer and C_{60}, as in P3OT/C_{60}. Upon photoexcitation, complete charge separation can occur from conducting polymer to C_{60}. (ii) There is no interaction between the ground-state wave functions of the polymer and C_{60}, but upon photoexcitation, photoinduced charge transfer can occur from conducting polymer to C_{60}, as in PPV/C_{60} and PMPS/C_{60} composites, etc. (iii) No charge transfer occurs in the ground state or upon photoexcitation, as in PHDK/C_{60} composite. The differences among (i), (ii) and (iii) type composites arise because the polymers in cases (i) and (ii) have nondegenerate ground states, whereas the polymers in case (iii) have a degenerate ground state. Thus, in case (iii), photoinduced charge transfer is ‘short-circuited’ by a competing process, and the short-circuited process is related to the formation of soliton–antisoliton pairs.

Conventional polymers such as polyethylene and polystyrene have been used as matrices for the functional composites. The structure and properties of these composites are strongly dependent on the properties and concentrations of the active component. In order to improve miscibility, many C_{60} derivatives have been used in composites.

Owing to the special electrochemical behavior and versatile chemical reactivity of C_{60} and CNTs, polymers with C_{60} or CNTs possess a broad range of potential applications, such as photosensitive drums for static copying machines, digital data storage media, photovoltaic cells and photodiodes, and optical limiting devices. Now, many opportunities can be expected to arise for combining fullerenes and CNTs with the familiar classical materials.

Acknowledgements

This work was supported by the National Science Foundation of China (Grant Nos. 50173005, 20374012, and 50203015), the Major State Basic Research Development Program of China (Grant No. G2000077500), and The Chinese Academy of Sciences.

References

Mignard E, Hoorn S, Francois B. Synthesis and characterization of star copolymer consisting of fullerenes and conjugated polyphenylene: 6-star-C_{60}(styrene-poly(1,4-phenylene)-block-polystyrene) and 6-star-C_{60}(polystyrene-block-poly(1,4-phenylene). Macromolecules 2002;35(16):6132–41.

